diff options
Diffstat (limited to 'Wrappers/Matlab/demos')
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m | 44 | ||||
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m | 8 |
2 files changed, 48 insertions, 4 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m new file mode 100644 index 0000000..f5c3ad1 --- /dev/null +++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m @@ -0,0 +1,44 @@ +% Volume (3D) denoising demo using CCPi-RGL + +addpath('../mex_compile/installed'); +addpath('../../../data/'); + +N = 256; +slices = 30; +vol3D = zeros(N,N,slices, 'single'); +Im = double(imread('lena_gray_256.tif'))/255; % loading image +for i = 1:slices +vol3D(:,:,i) = Im + .05*randn(size(Im)); +end +vol3D(vol3D < 0) = 0; +figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image'); + +%% +fprintf('Denoise using ROF-TV model (CPU) \n'); +lambda_rof = 0.03; % regularisation parameter +tau_rof = 0.0025; % time-marching constant +iter_rof = 1000; % number of ROF iterations +tic; u_rof = ROF_TV(single(vol3D), lambda_rof, iter_rof, tau_rof); toc; +figure; imshow(u_rof(:,:,15), [0 1]); title('ROF-TV denoised volume (CPU)'); +%% +% fprintf('Denoise using ROF-TV model (GPU) \n'); +% lambda_rof = 0.03; % regularisation parameter +% tau_rof = 0.0025; % time-marching constant +% iter_rof = 1000; % number of ROF iterations +% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_rof, iter_rof, tau_rof); toc; +% figure; imshow(u_rofG(:,:,15), [0 1]); title('ROF-TV denoised volume (GPU)'); +%% +fprintf('Denoise using FGP-TV model (CPU) \n'); +lambda_fgp = 0.03; % regularisation parameter +iter_fgp = 500; % number of FGP iterations +epsil_tol = 1.0e-05; % tolerance +tic; u_fgp = FGP_TV(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc; +figure; imshow(u_fgp(:,:,15), [0 1]); title('FGP-TV denoised volume (CPU)'); +%% +% fprintf('Denoise using FGP-TV model (GPU) \n'); +% lambda_fgp = 0.03; % regularisation parameter +% iter_fgp = 500; % number of FGP iterations +% epsil_tol = 1.0e-05; % tolerance +% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc; +% figure; imshow(u_fgpG(:,:,15), [0 1]); title('FGP-TV denoised volume (GPU)'); +%%
\ No newline at end of file diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index 7258e5e..ab4e95d 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -9,28 +9,28 @@ figure; imshow(u0, [0 1]); title('Noisy image'); %% fprintf('Denoise using ROF-TV model (CPU) \n'); -lambda_rof = 0.03; % regularization parameter +lambda_rof = 0.03; % regularisation parameter tau_rof = 0.0025; % time-marching constant iter_rof = 2000; % number of ROF iterations tic; u_rof = ROF_TV(single(u0), lambda_rof, iter_rof, tau_rof); toc; figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); %% % fprintf('Denoise using ROF-TV model (GPU) \n'); -% lambda_rof = 0.03; % regularization parameter +% lambda_rof = 0.03; % regularisation parameter % tau_rof = 0.0025; % time-marching constant % iter_rof = 2000; % number of ROF iterations % tic; u_rofG = ROF_TV_GPU(single(u0), lambda_rof, iter_rof, tau_rof); toc; % figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); %% fprintf('Denoise using FGP-TV model (CPU) \n'); -lambda_fgp = 0.03; % regularization parameter +lambda_fgp = 0.03; % regularisation parameter iter_fgp = 1000; % number of FGP iterations epsil_tol = 1.0e-05; % tolerance tic; u_fgp = FGP_TV(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); %% % fprintf('Denoise using FGP-TV model (GPU) \n'); -% lambda_fgp = 0.03; % regularization parameter +% lambda_fgp = 0.03; % regularisation parameter % iter_fgp = 1000; % number of FGP iterations % epsil_tol = 1.0e-05; % tolerance % tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; |