summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/demo
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Python/demo')
-rw-r--r--Wrappers/Python/demo/test_cpu_regularizers.py55
1 files changed, 24 insertions, 31 deletions
diff --git a/Wrappers/Python/demo/test_cpu_regularizers.py b/Wrappers/Python/demo/test_cpu_regularizers.py
index 5908c3c..76b9de7 100644
--- a/Wrappers/Python/demo/test_cpu_regularizers.py
+++ b/Wrappers/Python/demo/test_cpu_regularizers.py
@@ -11,11 +11,8 @@ import numpy as np
import os
from enum import Enum
import timeit
-from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV , FGP_TV ,\
- LLT_model, PatchBased_Regul ,\
- TGV_PD
-from ccpi.filters.cpu_regularizers_cython import ROF_TV
-
+from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV, LLT_model, PatchBased_Regul, TGV_PD
+from ccpi.filters.regularizers import ROF_TV, FGP_TV
###############################################################################
#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
#NRMSE a normalization of the root of the mean squared error
@@ -112,12 +109,10 @@ rms = rmse(Im, splitbregman)
pars['rmse'] = rms
txtstr = printParametersToString(pars)
txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
+print (txtstr)
a=fig.add_subplot(2,4,2)
-
# these are matplotlib.patch.Patch properties
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
# place a text box in upper left in axes coords
@@ -128,23 +123,26 @@ imgplot = plt.imshow(splitbregman,\
)
###################### FGP_TV #########################################
-# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+
start_time = timeit.default_timer()
pars = {'algorithm' : FGP_TV , \
- 'input' : u0,
- 'regularization_parameter':0.05, \
- 'number_of_iterations' :200 ,\
- 'tolerance_constant':1e-4,\
- 'TV_penalty': 0
-}
+ 'input' : u0,\
+ 'regularization_parameter':0.07, \
+ 'number_of_iterations' :300 ,\
+ 'tolerance_constant':0.00001,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
-out = FGP_TV (pars['input'],
+fgp = FGP_TV(pars['input'],
pars['regularization_parameter'],
pars['number_of_iterations'],
pars['tolerance_constant'],
- pars['TV_penalty'])
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'], 'cpu')
-fgp = out[0]
rms = rmse(Im, fgp)
pars['rmse'] = rms
@@ -165,8 +163,8 @@ imgplot = plt.imshow(fgp, \
a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
-###################### LLT_model #########################################
+###################### LLT_model #########################################
start_time = timeit.default_timer()
pars = {'algorithm': LLT_model , \
@@ -201,8 +199,6 @@ a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(llt,\
cmap="gray"
)
-
-
# ###################### PatchBased_Regul #########################################
# # Quick 2D denoising example in Matlab:
# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
@@ -284,16 +280,15 @@ start_time = timeit.default_timer()
pars = {'algorithm': ROF_TV , \
'input' : u0,\
- 'regularization_parameter':1,\
- 'marching_step': 0.003,\
+ 'regularization_parameter':0.07,\
+ 'marching_step': 0.0025,\
'number_of_iterations': 300
}
rof = ROF_TV(pars['input'],
- pars['number_of_iterations'],
- pars['regularization_parameter'],
- pars['marching_step']
- )
-#tgv = out
+ pars['regularization_parameter'],
+ pars['number_of_iterations'],
+ pars['marching_step'], 'cpu')
+
rms = rmse(Im, rof)
pars['rmse'] = rms
@@ -307,9 +302,7 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
# place a text box in upper left in axes coords
a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv, cmap="gray")
-
-
+imgplot = plt.imshow(rof, cmap="gray")
plt.show()