summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/src
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Python/src')
-rw-r--r--Wrappers/Python/src/fista_module_gpu.pyx75
1 files changed, 59 insertions, 16 deletions
diff --git a/Wrappers/Python/src/fista_module_gpu.pyx b/Wrappers/Python/src/fista_module_gpu.pyx
index da86c0a..41cf4a6 100644
--- a/Wrappers/Python/src/fista_module_gpu.pyx
+++ b/Wrappers/Python/src/fista_module_gpu.pyx
@@ -74,14 +74,14 @@ def Diff4thHajiaboli2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
# Running CUDA code here
#Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-# Diff4th_GPU_kernel(
-# #<float*> A_L.data, <float*> B_L.data,
-# &A_L[0,0], &B_L[0,0],
-# N, M, 0,
-# edge_preserving_parameter,
-# iterations ,
-# tau,
-# regularization_parameter)
+ Diff4th_GPU_kernel(
+ #<float*> A_L.data, <float*> B_L.data,
+ &A_L[0,0], &B_L[0,0],
+ N, M, 0,
+ edge_preserving_parameter,
+ iterations ,
+ tau,
+ regularization_parameter)
# copy the processed B_L to a smaller B
for i in range(N):
for j in range(M):
@@ -131,14 +131,14 @@ def Diff4thHajiaboli3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
# Running CUDA code here
#Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-# Diff4th_GPU_kernel(
-# #<float*> A_L.data, <float*> B_L.data,
-# &A_L[0,0,0], &B_L[0,0,0],
-# N, M, Z,
-# edge_preserving_parameter,
-# iterations ,
-# tau,
-# regularization_parameter)
+ Diff4th_GPU_kernel(
+ #<float*> A_L.data, <float*> B_L.data,
+ &A_L[0,0,0], &B_L[0,0,0],
+ N, M, Z,
+ edge_preserving_parameter,
+ iterations ,
+ tau,
+ regularization_parameter)
# copy the processed B_L to a smaller B
for i in range(N):
for j in range(M):
@@ -152,3 +152,46 @@ def Diff4thHajiaboli3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
return B
+def NML(inputData,
+ regularization_parameter,
+ iterations,
+ edge_preserving_parameter):
+ if inputData.ndim == 2:
+ return NML2D(inputData,
+ regularization_parameter,
+ iterations,
+ edge_preserving_parameter)
+ elif inputData.ndim == 3:
+ return NML3D(inputData,
+ regularization_parameter,
+ iterations,
+ edge_preserving_parameter)
+
+ #SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
+ #SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
+ #h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
+ #lambda = (float) mxGetScalar(prhs[4]);
+
+def NML2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ SearchW_real,
+ SimilW,
+ h,
+ lambdaf):
+ N, M = inputData.shape
+ if h < 0:
+ raise ValueError('Parameter for the PB filtering function must be > 0')
+
+ SearchW = SearchW_real + 2*SimilW;
+
+ SearchW_full = 2*SearchW + 1; #/* the full searching window size */
+ SimilW_full = 2*SimilW + 1; #/* the full similarity window size */
+ h2 = h*h;
+
+ padXY = SearchW + 2*SimilW; #/* padding sizes */
+ newsizeX = N + 2*(padXY); #/* the X size of the padded array */
+ newsizeY = M + 2*(padXY); #/* the Y size of the padded array */
+ newsizeZ = Z + 2*(padXY); #/* the Z size of the padded array */
+
+ B = np.zeros((N,M), dtype=np.float )
+
+ \ No newline at end of file