summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/ccpi/filters/regularisers.py14
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers.py50
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers3D.py67
-rw-r--r--Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py86
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers.py49
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers3D.py66
-rw-r--r--Wrappers/Python/setup-regularisers.py.in1
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx45
-rw-r--r--Wrappers/Python/src/gpu_regularisers.pyx47
9 files changed, 397 insertions, 28 deletions
diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py
index 0e435a6..52c7974 100644
--- a/Wrappers/Python/ccpi/filters/regularisers.py
+++ b/Wrappers/Python/ccpi/filters/regularisers.py
@@ -2,8 +2,8 @@
script which assigns a proper device core function based on a flag ('cpu' or 'gpu')
"""
-from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU, TGV_CPU
-from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU, TGV_GPU
+from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU, TGV_CPU, LLT_ROF_CPU
+from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU, TGV_GPU, LLT_ROF_GPU
from ccpi.filters.cpu_regularisers import NDF_INPAINT_CPU, NVM_INPAINT_CPU
def ROF_TV(inputData, regularisation_parameter, iterations,
@@ -147,7 +147,15 @@ def TGV(inputData, regularisation_parameter, alpha1, alpha0, iterations,
else:
raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
.format(device))
-
+def LLT_ROF(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations,
+ time_marching_parameter, device='cpu'):
+ if device == 'cpu':
+ return LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
+ elif device == 'gpu':
+ return LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
+ else:
+ raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
+ .format(device))
def NDF_INP(inputData, maskData, regularisation_parameter, edge_parameter, iterations,
time_marching_parameter, penalty_type):
return NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter,
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py
index 5c20244..b94f11c 100644
--- a/Wrappers/Python/demos/demo_cpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, FGP_dTV, TNV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, TNV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -256,6 +256,54 @@ imgplot = plt.imshow(tgv_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
#%%
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("______________LLT- ROF (2D)________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : u0,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.01, \
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT- ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_cpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+
+rms = rmse(Im, lltrof_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+#%%
+
+
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("________________NDF (2D)___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers3D.py b/Wrappers/Python/demos/demo_cpu_regularisers3D.py
index 8ee157e..9c28de1 100644
--- a/Wrappers/Python/demos/demo_cpu_regularisers3D.py
+++ b/Wrappers/Python/demos/demo_cpu_regularisers3D.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, LLT_ROF, FGP_dTV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -85,7 +85,7 @@ print ("_______________ROF-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(1)
+fig = plt.figure()
plt.suptitle('Performance of ROF-TV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy 15th slice of a volume')
@@ -120,13 +120,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(rof_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using ROF-TV'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________FGP-TV (3D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(2)
+fig = plt.figure()
plt.suptitle('Performance of FGP-TV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -170,12 +170,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(fgp_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using FGP-TV'))
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________SB-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(3)
+fig = plt.figure()
plt.suptitle('Performance of SB-TV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -216,12 +217,58 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(sb_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using SB-TV'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________LLT-ROF (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : noisyVol,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.015, \
+ 'number_of_iterations' :300 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_cpu3D = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+
+rms = rmse(idealVol, lltrof_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using LLT-ROF'))
+
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("________________NDF (3D)___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(4)
+fig = plt.figure()
plt.suptitle('Performance of NDF regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy volume')
@@ -262,13 +309,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(ndf_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using NDF iterations'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("___Anisotropic Diffusion 4th Order (2D)____")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(5)
+fig = plt.figure()
plt.suptitle('Performance of Diff4th regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy volume')
@@ -307,13 +354,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(diff4th_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using DIFF4th iterations'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________FGP-dTV (3D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(6)
+fig = plt.figure()
plt.suptitle('Performance of FGP-dTV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
index 46b8ffc..e45dc40 100644
--- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, FGP_dTV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -352,8 +352,7 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(tgv_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
-
-print ("##############SB TV GPU##################")
+print ("##############TGV GPU##################")
start_time = timeit.default_timer()
tgv_gpu = TGV(pars['input'],
pars['regularisation_parameter'],
@@ -392,6 +391,87 @@ else:
print ("Arrays match")
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________LLT-ROF bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of LLT-ROF regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : u0,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.01, \
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT- ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_cpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+
+rms = rmse(Im, lltrof_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+print ("#############LLT- ROF GPU####################")
+start_time = timeit.default_timer()
+lltrof_gpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+rms = rmse(Im, lltrof_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = LLT_ROF
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(lltrof_gpu))
+diff_im = abs(lltrof_cpu - lltrof_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________NDF bench___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py
index 792a019..de0cbde 100644
--- a/Wrappers/Python/demos/demo_gpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_gpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, FGP_dTV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -254,6 +254,53 @@ imgplot = plt.imshow(tgv_gpu, cmap="gray")
plt.title('{}'.format('GPU results'))
#%%
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("______________LLT- ROF (2D)________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : u0,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.01, \
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT- ROF GPU####################")
+start_time = timeit.default_timer()
+lltrof_gpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+
+rms = rmse(Im, lltrof_gpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________NDF regulariser_____________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers3D.py b/Wrappers/Python/demos/demo_gpu_regularisers3D.py
index 13c4e7b..d5f9a39 100644
--- a/Wrappers/Python/demos/demo_gpu_regularisers3D.py
+++ b/Wrappers/Python/demos/demo_gpu_regularisers3D.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, LLT_ROF, FGP_dTV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -86,12 +86,13 @@ for i in range (slices):
noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im))
idealVol[i,:,:] = Im
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________ROF-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(1)
+fig = plt.figure()
plt.suptitle('Performance of ROF-TV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy 15th slice of a volume')
@@ -125,13 +126,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(rof_gpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the GPU using ROF-TV'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________FGP-TV (3D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(2)
+fig = plt.figure()
plt.suptitle('Performance of FGP-TV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -174,12 +175,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(fgp_gpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the GPU using FGP-TV'))
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________SB-TV (3D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(3)
+fig = plt.figure()
plt.suptitle('Performance of SB-TV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -219,14 +221,58 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(sb_gpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the GPU using SB-TV'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________LLT-ROF (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : noisyVol,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.015, \
+ 'number_of_iterations' :300 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_gpu3D = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+rms = rmse(idealVol, lltrof_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the GPU using LLT-ROF'))
+
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________NDF-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(4)
+fig = plt.figure()
plt.suptitle('Performance of NDF regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -267,13 +313,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(ndf_gpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the GPU using NDF'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("___Anisotropic Diffusion 4th Order (3D)____")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(5)
+fig = plt.figure()
plt.suptitle('Performance of DIFF4th regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -312,13 +358,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(diff4_gpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('GPU results'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________FGP-dTV (3D)________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(6)
+fig = plt.figure()
plt.suptitle('Performance of FGP-dTV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
diff --git a/Wrappers/Python/setup-regularisers.py.in b/Wrappers/Python/setup-regularisers.py.in
index 89ebaf9..7108683 100644
--- a/Wrappers/Python/setup-regularisers.py.in
+++ b/Wrappers/Python/setup-regularisers.py.in
@@ -39,6 +39,7 @@ extra_include_dirs += [os.path.join(".." , ".." , "Core"),
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_ROF" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_SB" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TGV" ) ,
+ os.path.join(".." , ".." , "Core", "regularisers_GPU" , "LLTROF" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "NDF" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "dTV_FGP" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "DIFF4th" ) ,
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
index cf81bec..bf9c861 100644
--- a/Wrappers/Python/src/cpu_regularisers.pyx
+++ b/Wrappers/Python/src/cpu_regularisers.pyx
@@ -21,6 +21,7 @@ cimport numpy as np
cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ);
+cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY);
cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
@@ -222,7 +223,51 @@ def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
LipshitzConst,
dims[1],dims[0])
return outputData
+
+#***************************************************************#
+#******************* ROF - LLT regularisation ******************#
+#***************************************************************#
+def LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter):
+ if inputData.ndim == 2:
+ return LLT_ROF_2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
+ elif inputData.ndim == 3:
+ return LLT_ROF_3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
+
+def LLT_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ float regularisation_parameterROF,
+ float regularisation_parameterLLT,
+ int iterations,
+ float time_marching_parameter):
+
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ #/* Run ROF-LLT iterations for 2D data */
+ LLT_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1)
+ return outputData
+
+def LLT_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ float regularisation_parameterROF,
+ float regularisation_parameterLLT,
+ int iterations,
+ float time_marching_parameter):
+
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
+
+ #/* Run ROF-LLT iterations for 3D data */
+ LLT_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0])
+ return outputData
+
#****************************************************************#
#**************Directional Total-variation FGP ******************#
#****************************************************************#
diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx
index 4a202d7..82d3e01 100644
--- a/Wrappers/Python/src/gpu_regularisers.pyx
+++ b/Wrappers/Python/src/gpu_regularisers.pyx
@@ -22,6 +22,7 @@ cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, i
cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
cdef extern void TV_SB_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int printM, int N, int M, int Z);
cdef extern void TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY);
+cdef extern void LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z);
cdef extern void NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z);
cdef extern void dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z);
cdef extern void Diffus4th_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int N, int M, int Z);
@@ -87,6 +88,12 @@ def TV_SB_GPU(inputData,
tolerance_param,
methodTV,
printM)
+# LLT-ROF model
+def LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter):
+ if inputData.ndim == 2:
+ return LLT_ROF_GPU2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
+ elif inputData.ndim == 3:
+ return LLT_ROF_GPU3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
# Total Generilised Variation (TGV)
def TGV_GPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst):
if inputData.ndim == 2:
@@ -324,6 +331,46 @@ def SBTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
return outputData
#***************************************************************#
+#************************ LLT-ROF model ************************#
+#***************************************************************#
+#************Joint LLT-ROF model for higher order **************#
+def LLT_ROF_GPU2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ float regularisation_parameterROF,
+ float regularisation_parameterLLT,
+ int iterations,
+ float time_marching_parameter):
+
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ # Running CUDA code here
+ LLT_ROF_GPU_main(&inputData[0,0], &outputData[0,0],regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1);
+ return outputData
+
+def LLT_ROF_GPU3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ float regularisation_parameterROF,
+ float regularisation_parameterLLT,
+ int iterations,
+ float time_marching_parameter):
+
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+
+ # Running CUDA code here
+ LLT_ROF_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0]);
+ return outputData
+
+
+#***************************************************************#
#***************** Total Generalised Variation *****************#
#***************************************************************#
def TGV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,