diff options
Diffstat (limited to 'Wrappers/Python')
-rw-r--r-- | Wrappers/Python/demo/test_cpu_regularizers.py | 25 | ||||
-rw-r--r-- | Wrappers/Python/src/cpu_regularizers.cpp | 1 | ||||
-rw-r--r-- | Wrappers/Python/src/cpu_regularizers.pyx | 25 | ||||
-rw-r--r-- | Wrappers/Python/src/gpu_regularizers.pyx | 2 | ||||
-rw-r--r-- | Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py | 9 |
5 files changed, 32 insertions, 30 deletions
diff --git a/Wrappers/Python/demo/test_cpu_regularizers.py b/Wrappers/Python/demo/test_cpu_regularizers.py index b08c418..53b8538 100644 --- a/Wrappers/Python/demo/test_cpu_regularizers.py +++ b/Wrappers/Python/demo/test_cpu_regularizers.py @@ -11,10 +11,9 @@ import numpy as np import os from enum import Enum import timeit -from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV , FGP_TV ,\ - LLT_model, PatchBased_Regul ,\ +from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV, LLT_model, PatchBased_Regul ,\ TGV_PD -from ccpi.filters.cpu_regularizers_cython import ROF_TV +from ccpi.filters.cpu_regularizers_cython import TV_ROF_CPU, TV_FGP_CPU ############################################################################### #https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 @@ -128,21 +127,25 @@ imgplot = plt.imshow(splitbregman,\ ) ###################### FGP_TV ######################################### -# u = FGP_TV(single(u0), 0.05, 100, 1e-04); + start_time = timeit.default_timer() -pars = {'algorithm' : FGP_TV , \ +pars = {'algorithm' : TV_FGP_CPU , \ 'input' : u0, 'regularization_parameter':0.05, \ 'number_of_iterations' :200 ,\ - 'tolerance_constant':1e-4,\ - 'TV_penalty': 0 + 'tolerance_constant':1e-5,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 } -out = FGP_TV (pars['input'], +out = TV_FGP_CPU (pars['input'], pars['regularization_parameter'], pars['number_of_iterations'], pars['tolerance_constant'], - pars['TV_penalty']) + pars['methodTV'], + pars['nonneg'], + pars['printingOut']) fgp = out[0] rms = rmse(Im, fgp) @@ -282,13 +285,13 @@ imgplot = plt.imshow(tgv, cmap="gray") start_time = timeit.default_timer() -pars = {'algorithm': ROF_TV , \ +pars = {'algorithm': TV_ROF_CPU , \ 'input' : u0,\ 'regularization_parameter':0.04,\ 'marching_step': 0.0025,\ 'number_of_iterations': 300 } -rof = ROF_TV(pars['input'], +rof = TV_ROF_CPU(pars['input'], pars['number_of_iterations'], pars['regularization_parameter'], pars['marching_step'] diff --git a/Wrappers/Python/src/cpu_regularizers.cpp b/Wrappers/Python/src/cpu_regularizers.cpp index 43d5d11..b8156d5 100644 --- a/Wrappers/Python/src/cpu_regularizers.cpp +++ b/Wrappers/Python/src/cpu_regularizers.cpp @@ -1040,7 +1040,6 @@ BOOST_PYTHON_MODULE(cpu_regularizers_boost) np::dtype dt2 = np::dtype::get_builtin<uint16_t>(); def("SplitBregman_TV", SplitBregman_TV); - def("FGP_TV", FGP_TV); def("LLT_model", LLT_model); def("PatchBased_Regul", PatchBased_Regul); def("TGV_PD", TGV_PD); diff --git a/Wrappers/Python/src/cpu_regularizers.pyx b/Wrappers/Python/src/cpu_regularizers.pyx index b8089a8..448da31 100644 --- a/Wrappers/Python/src/cpu_regularizers.pyx +++ b/Wrappers/Python/src/cpu_regularizers.pyx @@ -18,8 +18,8 @@ import cython import numpy as np cimport numpy as np -cdef extern float TV_ROF_CPU(float *Input, float *Output, int dimX, int dimY, int dimZ, int iterationsNumb, float tau, float flambda); -cdef extern float TV_FGP_CPU(float *Input, float *Output, float lambda, int iter, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); +cdef extern float TV_ROF_CPU_main(float *Input, float *Output, int dimX, int dimY, int dimZ, int iterationsNumb, float tau, float flambda); +cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); # Can we use the same name here in "def" as the C function? def TV_ROF_CPU(inputData, iterations, regularization_parameter, @@ -45,11 +45,10 @@ def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, np.zeros([dims[0],dims[1]], dtype='float32') #/* Run ROF iterations for 2D data */ - TV_ROF_CPU(&inputData[0,0], &B[0,0], dims[0], dims[1], 1, iterations, + TV_ROF_CPU_main(&inputData[0,0], &B[0,0], dims[0], dims[1], 1, iterations, marching_step_parameter, regularization_parameter) - return B - + return B def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, int iterations, @@ -65,7 +64,7 @@ def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, np.zeros([dims[0],dims[1],dims[2]], dtype='float32') #/* Run ROF iterations for 3D data */ - TV_FGP_CPU(&inputData[0,0,0], &B[0,0,0], dims[0], dims[1], dims[2], iterations, + TV_ROF_CPU_main(&inputData[0,0,0], &B[0,0,0], dims[0], dims[1], dims[2], iterations, marching_step_parameter, regularization_parameter) return B @@ -88,11 +87,11 @@ def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, dims[0] = inputData.shape[0] dims[1] = inputData.shape[1] - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] B = \ + cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ np.zeros([dims[0],dims[1]], dtype='float32') #/* Run ROF iterations for 2D data */ - TV_FGP_CPU(&inputData[0,0], &B[0,0], regularization_parameter, + TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularization_parameter, iterations, tolerance_param, methodTV, @@ -100,8 +99,7 @@ def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, printM, dims[0], dims[1], 1) - return B - + return outputData def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, float regularization_parameter, @@ -115,15 +113,16 @@ def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, dims[1] = inputData.shape[1] dims[2] = inputData.shape[2] - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] B = \ + cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ np.zeros([dims[0],dims[1],dims[2]], dtype='float32') #/* Run ROF iterations for 3D data */ - TV_FGP_CPU(&inputData[0,0, 0], &B[0,0, 0], iterations, + TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0, 0], regularization_parameter, + iterations, tolerance_param, methodTV, nonneg, printM, dims[0], dims[1], dims[2]) - return B + return outputData diff --git a/Wrappers/Python/src/gpu_regularizers.pyx b/Wrappers/Python/src/gpu_regularizers.pyx index a14a20d..e99bfa7 100644 --- a/Wrappers/Python/src/gpu_regularizers.pyx +++ b/Wrappers/Python/src/gpu_regularizers.pyx @@ -26,7 +26,7 @@ cdef extern void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int SearchW, int SimilW, int SearchW_real, float denh2, float lambdaf); cdef extern void TV_ROF_GPU(float* Input, float* Output, int N, int M, int Z, int iter, float tau, float lambdaf); -cdef extern void TV_FGP_GPU(float *Input, float *Output, float lambda, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z); +cdef extern void TV_FGP_GPU(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z); cdef extern float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, diff --git a/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py b/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py index 6344021..e162afa 100644 --- a/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py +++ b/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -from ccpi.filters.gpu_regularizers import Diff4thHajiaboli, NML, TV_ROF_GPU +from ccpi.filters.gpu_regularizers import Diff4thHajiaboli, NML, GPU_ROF_TV from ccpi.filters.cpu_regularizers_cython import TV_ROF_CPU ############################################################################### def printParametersToString(pars): @@ -56,11 +56,11 @@ imgplot = plt.imshow(u0,cmap="gray") # set parameters -pars = {'algorithm': ROF_TV , \ +pars = {'algorithm': TV_ROF_CPU , \ 'input' : u0,\ 'regularization_parameter':0.04,\ 'time_marching_parameter': 0.0025,\ - 'number_of_iterations': 600 + 'number_of_iterations': 1200 } print ("#################ROF TV CPU#####################") start_time = timeit.default_timer() @@ -89,13 +89,14 @@ plt.title('{}'.format('CPU results')) print ("#################ROF TV GPU#####################") start_time = timeit.default_timer() -rof_gpu = TV_ROF_GPU(pars['input'], +rof_gpu = GPU_ROF_TV(pars['input'], pars['number_of_iterations'], pars['time_marching_parameter'], pars['regularization_parameter']) rms = rmse(Im, rof_gpu) pars['rmse'] = rms +pars['algorithm'] = GPU_ROF_TV txtstr = printParametersToString(pars) txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) print (txtstr) |