summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py148
-rw-r--r--Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py29
2 files changed, 127 insertions, 50 deletions
diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py
index 8a11f04..4cd680e 100644
--- a/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py
+++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py
@@ -22,7 +22,8 @@ import numpy as np
import matplotlib.pyplot as plt
import h5py
from tomorec.supp.suppTools import normaliser
-
+import time
+from libtiff import TIFF
# load dendritic projection data
h5f = h5py.File('data/DendrData_3D.h5','r')
@@ -36,7 +37,7 @@ h5f.close()
data_norm = normaliser(dataRaw, flats, darks, log='log')
del dataRaw, darks, flats
-intens_max = 2
+intens_max = 2.3
plt.figure()
plt.subplot(131)
plt.imshow(data_norm[:,150,:],vmin=0, vmax=intens_max)
@@ -49,29 +50,38 @@ plt.imshow(data_norm[:,:,600],vmin=0, vmax=intens_max)
plt.title('Tangentogram view')
plt.show()
-
detectorHoriz = np.size(data_norm,2)
det_y_crop = [i for i in range(0,detectorHoriz-22)]
N_size = 950 # reconstruction domain
+time_label = int(time.time())
#%%
+"""
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("%%%%%%%%%%%%Reconstructing with FBP method %%%%%%%%%%%%%%%%%")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
from tomorec.methodsDIR import RecToolsDIR
RectoolsDIR = RecToolsDIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal)
- DetectorsDimV = 10, # DetectorsDimV # detector dimension (vertical) for 3D case only
+ DetectorsDimV = 200, # DetectorsDimV # detector dimension (vertical) for 3D case only
AnglesVec = angles_rad, # array of angles in radians
ObjSize = N_size, # a scalar to define reconstructed object dimensions
device='gpu')
-FBPrec = RectoolsDIR.FBP(data_norm[0:10,:,det_y_crop])
+FBPrec = RectoolsDIR.FBP(data_norm[20:220,:,det_y_crop])
plt.figure()
-#plt.imshow(FBPrec[0,150:550,150:550], vmin=0, vmax=0.005, cmap="gray")
plt.imshow(FBPrec[0,:,:], vmin=0, vmax=0.005, cmap="gray")
plt.title('FBP reconstruction')
+FBPrec += np.abs(np.min(FBPrec))
+multiplier = (int)(65535/(np.max(FBPrec)))
+
+# saving to tiffs (16bit)
+for i in range(0,np.size(FBPrec,0)):
+ tiff = TIFF.open('Dendr_FBP'+'_'+str(i)+'.tiff', mode='w')
+ tiff.write_image(np.uint16(FBPrec[i,:,:]*multiplier))
+ tiff.close()
+"""
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("Reconstructing with ADMM method using TomoRec software")
@@ -79,7 +89,7 @@ print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
# initialise TomoRec ITERATIVE reconstruction class ONCE
from tomorec.methodsIR import RecToolsIR
RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal)
- DetectorsDimV = 5, # DetectorsDimV # detector dimension (vertical) for 3D case only
+ DetectorsDimV = 200, # DetectorsDimV # detector dimension (vertical) for 3D case only
AnglesVec = angles_rad, # array of angles in radians
ObjSize = N_size, # a scalar to define reconstructed object dimensions
datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip)
@@ -88,29 +98,125 @@ RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH #
tolerance = 1e-08, # tolerance to stop outer iterations earlier
device='gpu')
#%%
-print ("Reconstructing with ADMM method using ROF-TV penalty")
+print ("Reconstructing with ADMM method using SB-TV penalty")
+RecADMM_reg_sbtv = RectoolsIR.ADMM(data_norm[20:220,:,det_y_crop],
+ rho_const = 2000.0, \
+ iterationsADMM = 15, \
+ regularisation = 'SB_TV', \
+ regularisation_parameter = 0.00085,\
+ regularisation_iterations = 50)
+
+sliceSel = 5
+max_val = 0.003
+plt.figure()
+plt.subplot(131)
+plt.imshow(RecADMM_reg_sbtv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray")
+plt.title('3D ADMM-SB-TV Reconstruction, axial view')
+
+plt.subplot(132)
+plt.imshow(RecADMM_reg_sbtv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="gray")
+plt.title('3D ADMM-SB-TV Reconstruction, coronal view')
+
+plt.subplot(133)
+plt.imshow(RecADMM_reg_sbtv[:,:,sliceSel],vmin=0, vmax=max_val, cmap="gray")
+plt.title('3D ADMM-SB-TV Reconstruction, sagittal view')
+plt.show()
+
+multiplier = (int)(65535/(np.max(RecADMM_reg_sbtv)))
+
+# saving to tiffs (16bit)
+for i in range(0,np.size(RecADMM_reg_sbtv,0)):
+ tiff = TIFF.open('Dendr_ADMM_SBTV'+'_'+str(i)+'.tiff', mode='w')
+ tiff.write_image(np.uint16(RecADMM_reg_sbtv[i,:,:]*multiplier))
+ tiff.close()
-RecADMM_reg_roftv = RectoolsIR.ADMM(data_norm[0:5,:,det_y_crop],
+# Saving recpnstructed data with a unique time label
+np.save('Dendr_ADMM_SBTV'+str(time_label)+'.npy', RecADMM_reg_sbtv)
+del RecADMM_reg_sbtv
+#%%
+print ("Reconstructing with ADMM method using ROF-LLT penalty")
+RecADMM_reg_rofllt = RectoolsIR.ADMM(data_norm[20:220,:,det_y_crop],
rho_const = 2000.0, \
- iterationsADMM = 3, \
- regularisation = 'FGP_TV', \
- regularisation_parameter = 0.001,\
- regularisation_iterations = 80)
+ iterationsADMM = 15, \
+ regularisation = 'LLT_ROF', \
+ regularisation_parameter = 0.0009,\
+ regularisation_parameter2 = 0.0007,\
+ time_marching_parameter = 0.001,\
+ regularisation_iterations = 450)
+
+sliceSel = 5
+max_val = 0.003
+plt.figure()
+plt.subplot(131)
+plt.imshow(RecADMM_reg_rofllt[sliceSel,:,:],vmin=0, vmax=max_val)
+plt.title('3D ADMM-ROFLLT Reconstruction, axial view')
+
+plt.subplot(132)
+plt.imshow(RecADMM_reg_rofllt[:,sliceSel,:],vmin=0, vmax=max_val)
+plt.title('3D ADMM-ROFLLT Reconstruction, coronal view')
+
+plt.subplot(133)
+plt.imshow(RecADMM_reg_rofllt[:,:,sliceSel],vmin=0, vmax=max_val)
+plt.title('3D ADMM-ROFLLT Reconstruction, sagittal view')
+plt.show()
+
+multiplier = (int)(65535/(np.max(RecADMM_reg_rofllt)))
+
+# saving to tiffs (16bit)
+for i in range(0,np.size(RecADMM_reg_rofllt,0)):
+ tiff = TIFF.open('Dendr_ADMM_ROFLLT'+'_'+str(i)+'.tiff', mode='w')
+ tiff.write_image(np.uint16(RecADMM_reg_rofllt[i,:,:]*multiplier))
+ tiff.close()
+
+
+# Saving recpnstructed data with a unique time label
+np.save('Dendr_ADMM_ROFLLT'+str(time_label)+'.npy', RecADMM_reg_rofllt)
+del RecADMM_reg_rofllt
+#%%
+RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal)
+ DetectorsDimV = 10, # DetectorsDimV # detector dimension (vertical) for 3D case only
+ AnglesVec = angles_rad, # array of angles in radians
+ ObjSize = N_size, # a scalar to define reconstructed object dimensions
+ datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip)
+ nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE')
+ OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets
+ tolerance = 1e-08, # tolerance to stop outer iterations earlier
+ device='cpu')
+print ("Reconstructing with ADMM method using TGV penalty")
+RecADMM_reg_tgv = RectoolsIR.ADMM(data_norm[0:10,:,det_y_crop],
+ rho_const = 2000.0, \
+ iterationsADMM = 15, \
+ regularisation = 'TGV', \
+ regularisation_parameter = 0.01,\
+ regularisation_iterations = 450)
-sliceSel = 2
-max_val = 0.005
+sliceSel = 7
+max_val = 0.003
plt.figure()
plt.subplot(131)
-plt.imshow(RecADMM_reg_roftv[sliceSel,:,:],vmin=0, vmax=max_val)
-plt.title('3D ADMM-ROF-TV Reconstruction, axial view')
+plt.imshow(RecADMM_reg_tgv[sliceSel,:,:],vmin=0, vmax=max_val)
+plt.title('3D ADMM-TGV Reconstruction, axial view')
plt.subplot(132)
-plt.imshow(RecADMM_reg_roftv[:,sliceSel,:],vmin=0, vmax=max_val)
-plt.title('3D ADMM-ROF-TV Reconstruction, coronal view')
+plt.imshow(RecADMM_reg_tgv[:,sliceSel,:],vmin=0, vmax=max_val)
+plt.title('3D ADMM-TGV Reconstruction, coronal view')
plt.subplot(133)
-plt.imshow(RecADMM_reg_roftv[:,:,sliceSel],vmin=0, vmax=max_val)
-plt.title('3D ADMM-ROF-TV Reconstruction, sagittal view')
+plt.imshow(RecADMM_reg_tgv[:,:,sliceSel],vmin=0, vmax=max_val)
+plt.title('3D ADMM-TGV Reconstruction, sagittal view')
plt.show()
+
+multiplier = (int)(65535/(np.max(RecADMM_reg_tgv)))
+
+# saving to tiffs (16bit)
+for i in range(0,np.size(RecADMM_reg_tgv,0)):
+ tiff = TIFF.open('Dendr_ADMM_TGV'+'_'+str(i)+'.tiff', mode='w')
+ tiff.write_image(np.uint16(RecADMM_reg_tgv[i,:,:]*multiplier))
+ tiff.close()
+
+
+# Saving recpnstructed data with a unique time label
+#np.save('Dendr_ADMM_TGV'+str(time_label)+'.npy', RecADMM_reg_tgv)
+del RecADMM_reg_tgv
#%% \ No newline at end of file
diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py
index 5dbd436..a022ad7 100644
--- a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py
+++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py
@@ -197,32 +197,3 @@ Qtools = QualityTools(phantom, RecADMM_reg_tgv)
RMSE_admm_tgv = Qtools.rmse()
print("Root Mean Square Error for ADMM-TGV is {}".format(RMSE_admm_tgv))
#%%
-print ("Reconstructing with ADMM method using Diff4th penalty")
-RecADMM_reg_diff4th = RectoolsIR.ADMM(projdata_norm,
- rho_const = 2000.0, \
- iterationsADMM = 30, \
- regularisation = 'Diff4th', \
- regularisation_parameter = 0.0005,\
- regularisation_iterations = 200)
-
-sliceSel = int(0.5*N_size)
-max_val = 1
-plt.figure()
-plt.subplot(131)
-plt.imshow(RecADMM_reg_diff4th[sliceSel,:,:],vmin=0, vmax=max_val)
-plt.title('3D ADMM-Diff4th Reconstruction, axial view')
-
-plt.subplot(132)
-plt.imshow(RecADMM_reg_diff4th[:,sliceSel,:],vmin=0, vmax=max_val)
-plt.title('3D ADMM-Diff4th Reconstruction, coronal view')
-
-plt.subplot(133)
-plt.imshow(RecADMM_reg_diff4th[:,:,sliceSel],vmin=0, vmax=max_val)
-plt.title('3D ADMM-Diff4th Reconstruction, sagittal view')
-plt.show()
-
-# calculate errors
-Qtools = QualityTools(phantom, RecADMM_reg_diff4th)
-RMSE_admm_diff4th = Qtools.rmse()
-print("Root Mean Square Error for ADMM-Diff4th is {}".format(RMSE_admm_diff4th))
-#%%