summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m68
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m20
-rw-r--r--Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m22
-rw-r--r--Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m22
-rw-r--r--Wrappers/Matlab/mex_compile/compileGPU_mex.m21
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c81
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp81
-rw-r--r--Wrappers/Python/ccpi/filters/regularisers.py14
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers.py50
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers3D.py67
-rw-r--r--Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py86
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers.py49
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers3D.py66
-rw-r--r--Wrappers/Python/setup-regularisers.py.in1
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx45
-rw-r--r--Wrappers/Python/src/gpu_regularisers.pyx47
16 files changed, 690 insertions, 50 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
index 9a65e37..5cc47b3 100644
--- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
@@ -6,11 +6,13 @@ addpath(Path1);
addpath(Path2);
N = 512;
-slices = 30;
+slices = 15;
vol3D = zeros(N,N,slices, 'single');
+Ideal3D = zeros(N,N,slices, 'single');
Im = double(imread('lena_gray_512.tif'))/255; % loading image
for i = 1:slices
vol3D(:,:,i) = Im + .05*randn(size(Im));
+Ideal3D(:,:,i) = Im;
end
vol3D(vol3D < 0) = 0;
figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image');
@@ -23,39 +25,71 @@ tau_rof = 0.0025; % time-marching constant
iter_rof = 300; % number of ROF iterations
tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc;
energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value
-figure; imshow(u_rof(:,:,15), [0 1]); title('ROF-TV denoised volume (CPU)');
+rmse_rof = (RMSE(Ideal3D(:),u_rof(:)));
+fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof);
+figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)');
%%
% fprintf('Denoise a volume using the ROF-TV model (GPU) \n');
% tau_rof = 0.0025; % time-marching constant
% iter_rof = 300; % number of ROF iterations
% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof); toc;
-% figure; imshow(u_rofG(:,:,15), [0 1]); title('ROF-TV denoised volume (GPU)');
+% rmse_rofG = (RMSE(Ideal3D(:),u_rofG(:)));
+% fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rofG);
+% figure; imshow(u_rofG(:,:,7), [0 1]); title('ROF-TV denoised volume (GPU)');
%%
fprintf('Denoise a volume using the FGP-TV model (CPU) \n');
iter_fgp = 300; % number of FGP iterations
epsil_tol = 1.0e-05; % tolerance
tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;
energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value
-figure; imshow(u_fgp(:,:,15), [0 1]); title('FGP-TV denoised volume (CPU)');
+rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:)));
+fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp);
+figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)');
%%
% fprintf('Denoise a volume using the FGP-TV model (GPU) \n');
% iter_fgp = 300; % number of FGP iterations
% epsil_tol = 1.0e-05; % tolerance
% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;
-% figure; imshow(u_fgpG(:,:,15), [0 1]); title('FGP-TV denoised volume (GPU)');
+% rmse_fgpG = (RMSE(Ideal3D(:),u_fgpG(:)));
+% fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgpG);
+% figure; imshow(u_fgpG(:,:,7), [0 1]); title('FGP-TV denoised volume (GPU)');
%%
fprintf('Denoise a volume using the SB-TV model (CPU) \n');
iter_sb = 150; % number of SB iterations
epsil_tol = 1.0e-05; % tolerance
tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value
-figure; imshow(u_sb(:,:,15), [0 1]); title('SB-TV denoised volume (CPU)');
+rmse_sb = (RMSE(Ideal3D(:),u_sb(:)));
+fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sb);
+figure; imshow(u_sb(:,:,7), [0 1]); title('SB-TV denoised volume (CPU)');
%%
% fprintf('Denoise a volume using the SB-TV model (GPU) \n');
% iter_sb = 150; % number of SB iterations
% epsil_tol = 1.0e-05; % tolerance
% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
-% figure; imshow(u_sbG(:,:,15), [0 1]); title('SB-TV denoised volume (GPU)');
+% rmse_sbG = (RMSE(Ideal3D(:),u_sbG(:)));
+% fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sbG);
+% figure; imshow(u_sbG(:,:,7), [0 1]); title('SB-TV denoised volume (GPU)');
+%%
+fprintf('Denoise a volume using the ROF-LLT model (CPU) \n');
+lambda_ROF = lambda_reg; % ROF regularisation parameter
+lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter
+iter_LLT = 300; % iterations
+tau_rof_llt = 0.0025; % time-marching constant
+tic; u_rof_llt = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt(:)));
+fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt);
+figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)');
+%%
+% fprintf('Denoise a volume using the ROF-LLT model (GPU) \n');
+% lambda_ROF = lambda_reg; % ROF regularisation parameter
+% lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter
+% iter_LLT = 300; % iterations
+% tau_rof_llt = 0.0025; % time-marching constant
+% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+% rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:)));
+% fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt);
+% figure; imshow(u_rof_llt_g(:,:,7), [0 1]); title('ROF-LLT denoised volume (GPU)');
%%
fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n');
iter_diff = 300; % number of diffusion iterations
@@ -63,7 +97,9 @@ lambda_regDiff = 0.025; % regularisation for the diffusivity
sigmaPar = 0.015; % edge-preserving parameter
tau_param = 0.025; % time-marching constant
tic; u_diff = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-figure; imshow(u_diff(:,:,15), [0 1]); title('Diffusion denoised volume (CPU)');
+rmse_diff = (RMSE(Ideal3D(:),u_diff(:)));
+fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff);
+figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)');
%%
% fprintf('Denoise a volume using Nonlinear-Diffusion model (GPU) \n');
% iter_diff = 300; % number of diffusion iterations
@@ -71,7 +107,9 @@ figure; imshow(u_diff(:,:,15), [0 1]); title('Diffusion denoised volume (CPU)');
% sigmaPar = 0.015; % edge-preserving parameter
% tau_param = 0.025; % time-marching constant
% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-% figure; imshow(u_diff_g(:,:,15), [0 1]); title('Diffusion denoised volume (GPU)');
+% rmse_diff = (RMSE(Ideal3D(:),u_diff_g(:)));
+% fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff);
+% figure; imshow(u_diff_g(:,:,7), [0 1]); title('Diffusion denoised volume (GPU)');
%%
fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n');
iter_diff = 300; % number of diffusion iterations
@@ -79,7 +117,9 @@ lambda_regDiff = 3.5; % regularisation for the diffusivity
sigmaPar = 0.02; % edge-preserving parameter
tau_param = 0.0015; % time-marching constant
tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-figure; imshow(u_diff4(:,:,15), [0 1]); title('Diffusion 4thO denoised volume (CPU)');
+rmse_diff4 = (RMSE(Ideal3D(:),u_diff4(:)));
+fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4);
+figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CPU)');
%%
% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
% iter_diff = 300; % number of diffusion iterations
@@ -87,7 +127,9 @@ figure; imshow(u_diff4(:,:,15), [0 1]); title('Diffusion 4thO denoised volume (C
% sigmaPar = 0.02; % edge-preserving parameter
% tau_param = 0.0015; % time-marching constant
% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-% figure; imshow(u_diff4_g(:,:,15), [0 1]); title('Diffusion 4thO denoised volume (GPU)');
+% rmse_diff4 = (RMSE(Ideal3D(:),u_diff4_g(:)));
+% fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4);
+% figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)');
%%
%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
@@ -105,7 +147,7 @@ iter_fgp = 300; % number of FGP iterations
epsil_tol = 1.0e-05; % tolerance
eta = 0.2; % Reference image gradient smoothing constant
tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-figure; imshow(u_fgp_dtv(:,:,15), [0 1]); title('FGP-dTV denoised volume (CPU)');
+figure; imshow(u_fgp_dtv(:,:,7), [0 1]); title('FGP-dTV denoised volume (CPU)');
%%
fprintf('Denoise a volume using the FGP-dTV model (GPU) \n');
@@ -121,5 +163,5 @@ iter_fgp = 300; % number of FGP iterations
epsil_tol = 1.0e-05; % tolerance
eta = 0.2; % Reference image gradient smoothing constant
tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-figure; imshow(u_fgp_dtv_g(:,:,15), [0 1]); title('FGP-dTV denoised volume (GPU)');
+figure; imshow(u_fgp_dtv_g(:,:,7), [0 1]); title('FGP-dTV denoised volume (GPU)');
%%
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
index 3f0ca54..d11bc63 100644
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m
@@ -79,6 +79,26 @@ figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)');
% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu);
% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)');
%%
+fprintf('Denoise using the ROF-LLT model (CPU) \n');
+lambda_ROF = lambda_reg; % ROF regularisation parameter
+lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter
+iter_LLT = 1; % iterations
+tau_rof_llt = 0.0025; % time-marching constant
+tic; u_rof_llt = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+rmseROFLLT = (RMSE(u_rof_llt(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT);
+figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)');
+%%
+% fprintf('Denoise using the ROF-LLT model (GPU) \n');
+% lambda_ROF = lambda_reg; % ROF regularisation parameter
+% lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter
+% iter_LLT = 500; % iterations
+% tau_rof_llt = 0.0025; % time-marching constant
+% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+% rmseROFLLT_g = (RMSE(u_rof_llt_g(:),Im(:)));
+% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT_g);
+% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)');
+%%
fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n');
iter_diff = 800; % number of diffusion iterations
lambda_regDiff = 0.025; % regularisation for the diffusivity
diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m
index 8acc1b7..064b416 100644
--- a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m
+++ b/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m
@@ -14,44 +14,60 @@ cd regularisers_CPU
Pathmove = sprintf(['..' fsep 'installed' fsep], 1i);
-fprintf('%s \n', 'Compiling CPU regularisers...');
+fprintf('%s \n', '<<<<<<<<<<<Compiling CPU regularisers>>>>>>>>>>>>>');
+
+fprintf('%s \n', 'Compiling ROF-TV...');
mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('ROF_TV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling FGP-TV...');
mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('FGP_TV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling SB-TV...');
mex SB_TV.c SB_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('SB_TV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling dFGP-TV...');
mex FGP_dTV.c FGP_dTV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('FGP_dTV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling TNV...');
mex TNV.c TNV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('TNV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling NonLinear Diffusion...');
mex NonlDiff.c Diffusion_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('NonlDiff.mex*',Pathmove);
+fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...');
mex Diffusion_4thO.c Diffus4th_order_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('Diffusion_4thO.mex*',Pathmove);
+fprintf('%s \n', 'Compiling TGV...');
mex TGV.c TGV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('TGV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling ROF-LLT...');
+mex LLT_ROF.c LLT_ROF_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+movefile('LLT_ROF.mex*',Pathmove);
+
+fprintf('%s \n', 'Compiling additional tools...');
mex TV_energy.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('TV_energy.mex*',Pathmove);
%############Inpainters##############%
+fprintf('%s \n', 'Compiling Nonlinear/Linear diffusion inpainting...');
mex NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('NonlDiff_Inp.mex*',Pathmove);
+fprintf('%s \n', 'Compiling Nonlocal marching method for inpaiting...');
mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('NonlocalMarching_Inpaint.mex*',Pathmove);
-delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* CCPiDefines.h
+delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* LLT_ROF_core* CCPiDefines.h
delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core*
-fprintf('%s \n', 'Regularisers successfully compiled!');
+fprintf('%s \n', '<<<<<<< Regularisers successfully compiled! >>>>>>>');
pathA2 = sprintf(['..' fsep '..' fsep], 1i);
cd(pathA2);
diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m
index ea1ad7d..1b59dc2 100644
--- a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m
+++ b/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m
@@ -5,7 +5,7 @@
% not sure if openmp is enabled after the compilation.
% Here I present two ways how software can be compiled, if you have some
-% other suggestions please contact me at dkazanc@hotmail.com
+% other suggestions/remarks please contact me at dkazanc@hotmail.com
% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>
fsep = '/';
@@ -22,38 +22,54 @@ cd regularisers_CPU
Pathmove = sprintf(['..' fsep 'installed' fsep], 1i);
-fprintf('%s \n', 'Compiling CPU regularisers...');
+fprintf('%s \n', '<<<<<<<<<<<Compiling CPU regularisers>>>>>>>>>>>>>');
+
+fprintf('%s \n', 'Compiling ROF-TV...');
mex ROF_TV.c ROF_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('ROF_TV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling FGP-TV...');
mex FGP_TV.c FGP_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('FGP_TV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling SB-TV...');
mex SB_TV.c SB_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('SB_TV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling dFGP-TV...');
mex FGP_dTV.c FGP_dTV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('FGP_dTV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling TNV...');
mex TNV.c TNV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('TNV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling NonLinear Diffusion...');
mex NonlDiff.c Diffusion_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('NonlDiff.mex*',Pathmove);
+fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...');
mex Diffusion_4thO.c Diffus4th_order_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('Diffusion_4thO.mex*',Pathmove);
+fprintf('%s \n', 'Compiling TGV...');
mex TGV.c TGV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('TGV.mex*',Pathmove);
+fprintf('%s \n', 'Compiling ROF-LLT...');
+mex LLT_ROF.c LLT_ROF_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
+movefile('LLT_ROF.mex*',Pathmove);
+
+fprintf('%s \n', 'Compiling additional tools...');
mex TV_energy.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('TV_energy.mex*',Pathmove);
%############Inpainters##############%
+fprintf('%s \n', 'Compiling Nonlinear/Linear diffusion inpainting...');
mex NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('NonlDiff_Inp.mex*',Pathmove);
+fprintf('%s \n', 'Compiling Nonlocal marching method for inpaiting...');
mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('NonlocalMarching_Inpaint.mex*',Pathmove);
@@ -87,6 +103,8 @@ fprintf('%s \n', 'Regularisers successfully compiled!');
% movefile('Diffusion_4thO.mex*',Pathmove);
% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TGV.c TGV_core.c utils.c
% movefile('TGV.mex*',Pathmove);
+% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" LLT_ROF.c LLT_ROF_core.c utils.c
+% movefile('LLT_ROF.mex*',Pathmove);
% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TV_energy.c utils.c
% movefile('TV_energy.mex*',Pathmove);
% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c
diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
index 003c6ec..e0311ea 100644
--- a/Wrappers/Matlab/mex_compile/compileGPU_mex.m
+++ b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
@@ -9,8 +9,8 @@
% Tested on Ubuntu 16.04/MATLAB 2016b/cuda7.5/gcc4.9
-% It HAS NOT been tested on Windows, please contact me if you'll be able to
-% install software on Windows and I greatefully include it into the release.
+% Installation HAS NOT been tested on Windows, please contact me if you'll be able to
+% install software on Windows and I gratefully include it into the master release.
fsep = '/';
@@ -24,36 +24,49 @@ cd regularisers_GPU
Pathmove = sprintf(['..' fsep 'installed' fsep], 1i);
-fprintf('%s \n', 'Compiling GPU regularisers (CUDA)...');
+fprintf('%s \n', '<<<<<<<<<<<Compiling GPU regularisers (CUDA)>>>>>>>>>>>>>');
+
+fprintf('%s \n', 'Compiling ROF-TV...');
!/usr/local/cuda/bin/nvcc -O0 -c TV_ROF_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu ROF_TV_GPU.cpp TV_ROF_GPU_core.o
movefile('ROF_TV_GPU.mex*',Pathmove);
+fprintf('%s \n', 'Compiling FGP-TV...');
!/usr/local/cuda/bin/nvcc -O0 -c TV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu FGP_TV_GPU.cpp TV_FGP_GPU_core.o
movefile('FGP_TV_GPU.mex*',Pathmove);
+fprintf('%s \n', 'Compiling SB-TV...');
!/usr/local/cuda/bin/nvcc -O0 -c TV_SB_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu SB_TV_GPU.cpp TV_SB_GPU_core.o
movefile('SB_TV_GPU.mex*',Pathmove);
+fprintf('%s \n', 'Compiling TGV...');
!/usr/local/cuda/bin/nvcc -O0 -c TGV_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu TGV_GPU.cpp TGV_GPU_core.o
movefile('TGV_GPU.mex*',Pathmove);
+fprintf('%s \n', 'Compiling dFGP-TV...');
!/usr/local/cuda/bin/nvcc -O0 -c dTV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu FGP_dTV_GPU.cpp dTV_FGP_GPU_core.o
movefile('FGP_dTV_GPU.mex*',Pathmove);
+fprintf('%s \n', 'Compiling NonLinear Diffusion...');
!/usr/local/cuda/bin/nvcc -O0 -c NonlDiff_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu NonlDiff_GPU.cpp NonlDiff_GPU_core.o
movefile('NonlDiff_GPU.mex*',Pathmove);
+fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...');
!/usr/local/cuda/bin/nvcc -O0 -c Diffus_4thO_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu Diffusion_4thO_GPU.cpp Diffus_4thO_GPU_core.o
movefile('Diffusion_4thO_GPU.mex*',Pathmove);
-delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* TGV_GPU_core* CCPiDefines.h
+fprintf('%s \n', 'Compiling ROF-LLT...');
+!/usr/local/cuda/bin/nvcc -O0 -c LLT_ROF_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
+mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu LLT_ROF_GPU.cpp LLT_ROF_GPU_core.o
+movefile('LLT_ROF_GPU.mex*',Pathmove);
+
+delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* TGV_GPU_core* LLT_ROF_GPU_core* CCPiDefines.h
fprintf('%s \n', 'All successfully compiled!');
pathA2 = sprintf(['..' fsep '..' fsep], 1i);
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c
new file mode 100644
index 0000000..81b717d
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c
@@ -0,0 +1,81 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "LLT_ROF_core.h"
+
+/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty.
+*
+* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well.
+* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase
+* lambdaLLT starting with smaller values.
+*
+* Input Parameters:
+* 1. U0 - original noise image/volume
+* 2. lambdaROF - ROF-related regularisation parameter
+* 3. lambdaLLT - LLT-related regularisation parameter
+* 4. tau - time-marching step
+* 5. iter - iterations number (for both models)
+*
+* Output:
+* Filtered/regularised image
+*
+* References:
+* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
+* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
+*/
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iterationsNumb, dimX, dimY, dimZ;
+ const int *dim_array;
+ float *Input, *Output=NULL, lambdaROF, lambdaLLT, tau;
+
+ dim_array = mxGetDimensions(prhs[0]);
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+
+ if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter (ROF), Regularisation parameter (LTT), iterations number, time-marching parameter");
+
+ /*Handling Matlab input data*/
+ Input = (float *) mxGetData(prhs[0]);
+ lambdaROF = (float) mxGetScalar(prhs[1]); /* ROF regularization parameter */
+ lambdaLLT = (float) mxGetScalar(prhs[2]); /* ROF regularization parameter */
+ iterationsNumb = 250;
+ tau = 0.0025;
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ if ((nrhs == 4) || (nrhs == 5)) iterationsNumb = (int) mxGetScalar(prhs[3]); /* iterations number */
+ if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+
+ /* output arrays*/
+ if (number_of_dims == 2) {
+ dimZ = 1; /*2D case*/
+ /* output image/volume */
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ }
+ if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ LLT_ROF_CPU_main(Input, Output, lambdaROF, lambdaLLT, iterationsNumb, tau, dimX, dimY, dimZ);
+} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp
new file mode 100644
index 0000000..37563b0
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp
@@ -0,0 +1,81 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "LLT_ROF_GPU_core.h"
+
+/* CUDA implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty.
+*
+* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well.
+* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase
+* lambdaLLT starting with smaller values.
+*
+* Input Parameters:
+* 1. U0 - original noise image/volume
+* 2. lambdaROF - ROF-related regularisation parameter
+* 3. lambdaLLT - LLT-related regularisation parameter
+* 4. tau - time-marching step
+* 5. iter - iterations number (for both models)
+*
+* Output:
+* Filtered/regularised image
+*
+* References:
+* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
+* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
+*/
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iterationsNumb, dimX, dimY, dimZ;
+ const int *dim_array;
+ float *Input, *Output=NULL, lambdaROF, lambdaLLT, tau;
+
+ dim_array = mxGetDimensions(prhs[0]);
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+
+ if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter (ROF), Regularisation parameter (LTT), iterations number, time-marching parameter");
+
+ /*Handling Matlab input data*/
+ Input = (float *) mxGetData(prhs[0]);
+ lambdaROF = (float) mxGetScalar(prhs[1]); /* ROF regularization parameter */
+ lambdaLLT = (float) mxGetScalar(prhs[2]); /* ROF regularization parameter */
+ iterationsNumb = 250;
+ tau = 0.0025;
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ if ((nrhs == 4) || (nrhs == 5)) iterationsNumb = (int) mxGetScalar(prhs[3]); /* iterations number */
+ if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+
+ /* output arrays*/
+ if (number_of_dims == 2) {
+ dimZ = 1; /*2D case*/
+ /* output image/volume */
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ }
+ if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ LLT_ROF_GPU_main(Input, Output, lambdaROF, lambdaLLT, iterationsNumb, tau, dimX, dimY, dimZ);
+} \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py
index 0e435a6..52c7974 100644
--- a/Wrappers/Python/ccpi/filters/regularisers.py
+++ b/Wrappers/Python/ccpi/filters/regularisers.py
@@ -2,8 +2,8 @@
script which assigns a proper device core function based on a flag ('cpu' or 'gpu')
"""
-from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU, TGV_CPU
-from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU, TGV_GPU
+from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU, TGV_CPU, LLT_ROF_CPU
+from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU, TGV_GPU, LLT_ROF_GPU
from ccpi.filters.cpu_regularisers import NDF_INPAINT_CPU, NVM_INPAINT_CPU
def ROF_TV(inputData, regularisation_parameter, iterations,
@@ -147,7 +147,15 @@ def TGV(inputData, regularisation_parameter, alpha1, alpha0, iterations,
else:
raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
.format(device))
-
+def LLT_ROF(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations,
+ time_marching_parameter, device='cpu'):
+ if device == 'cpu':
+ return LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
+ elif device == 'gpu':
+ return LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
+ else:
+ raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
+ .format(device))
def NDF_INP(inputData, maskData, regularisation_parameter, edge_parameter, iterations,
time_marching_parameter, penalty_type):
return NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter,
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py
index 5c20244..b94f11c 100644
--- a/Wrappers/Python/demos/demo_cpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, FGP_dTV, TNV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, TNV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -256,6 +256,54 @@ imgplot = plt.imshow(tgv_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
#%%
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("______________LLT- ROF (2D)________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : u0,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.01, \
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT- ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_cpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+
+rms = rmse(Im, lltrof_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+#%%
+
+
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("________________NDF (2D)___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers3D.py b/Wrappers/Python/demos/demo_cpu_regularisers3D.py
index 8ee157e..9c28de1 100644
--- a/Wrappers/Python/demos/demo_cpu_regularisers3D.py
+++ b/Wrappers/Python/demos/demo_cpu_regularisers3D.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, LLT_ROF, FGP_dTV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -85,7 +85,7 @@ print ("_______________ROF-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(1)
+fig = plt.figure()
plt.suptitle('Performance of ROF-TV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy 15th slice of a volume')
@@ -120,13 +120,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(rof_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using ROF-TV'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________FGP-TV (3D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(2)
+fig = plt.figure()
plt.suptitle('Performance of FGP-TV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -170,12 +170,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(fgp_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using FGP-TV'))
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________SB-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(3)
+fig = plt.figure()
plt.suptitle('Performance of SB-TV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -216,12 +217,58 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(sb_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using SB-TV'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________LLT-ROF (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : noisyVol,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.015, \
+ 'number_of_iterations' :300 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_cpu3D = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+
+rms = rmse(idealVol, lltrof_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using LLT-ROF'))
+
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("________________NDF (3D)___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(4)
+fig = plt.figure()
plt.suptitle('Performance of NDF regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy volume')
@@ -262,13 +309,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(ndf_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using NDF iterations'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("___Anisotropic Diffusion 4th Order (2D)____")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(5)
+fig = plt.figure()
plt.suptitle('Performance of Diff4th regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy volume')
@@ -307,13 +354,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(diff4th_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using DIFF4th iterations'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________FGP-dTV (3D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(6)
+fig = plt.figure()
plt.suptitle('Performance of FGP-dTV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
index 46b8ffc..e45dc40 100644
--- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, FGP_dTV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -352,8 +352,7 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(tgv_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
-
-print ("##############SB TV GPU##################")
+print ("##############TGV GPU##################")
start_time = timeit.default_timer()
tgv_gpu = TGV(pars['input'],
pars['regularisation_parameter'],
@@ -392,6 +391,87 @@ else:
print ("Arrays match")
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________LLT-ROF bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of LLT-ROF regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : u0,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.01, \
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT- ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_cpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'cpu')
+
+rms = rmse(Im, lltrof_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+print ("#############LLT- ROF GPU####################")
+start_time = timeit.default_timer()
+lltrof_gpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+rms = rmse(Im, lltrof_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = LLT_ROF
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(lltrof_gpu))
+diff_im = abs(lltrof_cpu - lltrof_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________NDF bench___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py
index 792a019..de0cbde 100644
--- a/Wrappers/Python/demos/demo_gpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_gpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, FGP_dTV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -254,6 +254,53 @@ imgplot = plt.imshow(tgv_gpu, cmap="gray")
plt.title('{}'.format('GPU results'))
#%%
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("______________LLT- ROF (2D)________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : u0,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.01, \
+ 'number_of_iterations' :500 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT- ROF GPU####################")
+start_time = timeit.default_timer()
+lltrof_gpu = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+
+
+rms = rmse(Im, lltrof_gpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________NDF regulariser_____________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers3D.py b/Wrappers/Python/demos/demo_gpu_regularisers3D.py
index 13c4e7b..d5f9a39 100644
--- a/Wrappers/Python/demos/demo_gpu_regularisers3D.py
+++ b/Wrappers/Python/demos/demo_gpu_regularisers3D.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, LLT_ROF, FGP_dTV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -86,12 +86,13 @@ for i in range (slices):
noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im))
idealVol[i,:,:] = Im
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________ROF-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(1)
+fig = plt.figure()
plt.suptitle('Performance of ROF-TV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy 15th slice of a volume')
@@ -125,13 +126,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(rof_gpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the GPU using ROF-TV'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________FGP-TV (3D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(2)
+fig = plt.figure()
plt.suptitle('Performance of FGP-TV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -174,12 +175,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(fgp_gpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the GPU using FGP-TV'))
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________SB-TV (3D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(3)
+fig = plt.figure()
plt.suptitle('Performance of SB-TV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -219,14 +221,58 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(sb_gpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the GPU using SB-TV'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________LLT-ROF (3D)_________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : LLT_ROF, \
+ 'input' : noisyVol,\
+ 'regularisation_parameterROF':0.04, \
+ 'regularisation_parameterLLT':0.015, \
+ 'number_of_iterations' :300 ,\
+ 'time_marching_parameter' :0.0025 ,\
+ }
+
+print ("#############LLT ROF CPU####################")
+start_time = timeit.default_timer()
+lltrof_gpu3D = LLT_ROF(pars['input'],
+ pars['regularisation_parameterROF'],
+ pars['regularisation_parameterLLT'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],'gpu')
+rms = rmse(idealVol, lltrof_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(lltrof_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the GPU using LLT-ROF'))
+
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________NDF-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(4)
+fig = plt.figure()
plt.suptitle('Performance of NDF regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -267,13 +313,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(ndf_gpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the GPU using NDF'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("___Anisotropic Diffusion 4th Order (3D)____")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(5)
+fig = plt.figure()
plt.suptitle('Performance of DIFF4th regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -312,13 +358,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(diff4_gpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('GPU results'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________FGP-dTV (3D)________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(6)
+fig = plt.figure()
plt.suptitle('Performance of FGP-dTV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
diff --git a/Wrappers/Python/setup-regularisers.py.in b/Wrappers/Python/setup-regularisers.py.in
index 89ebaf9..7108683 100644
--- a/Wrappers/Python/setup-regularisers.py.in
+++ b/Wrappers/Python/setup-regularisers.py.in
@@ -39,6 +39,7 @@ extra_include_dirs += [os.path.join(".." , ".." , "Core"),
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_ROF" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_SB" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TGV" ) ,
+ os.path.join(".." , ".." , "Core", "regularisers_GPU" , "LLTROF" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "NDF" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "dTV_FGP" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "DIFF4th" ) ,
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
index cf81bec..bf9c861 100644
--- a/Wrappers/Python/src/cpu_regularisers.pyx
+++ b/Wrappers/Python/src/cpu_regularisers.pyx
@@ -21,6 +21,7 @@ cimport numpy as np
cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ);
+cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY);
cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
@@ -222,7 +223,51 @@ def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
LipshitzConst,
dims[1],dims[0])
return outputData
+
+#***************************************************************#
+#******************* ROF - LLT regularisation ******************#
+#***************************************************************#
+def LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter):
+ if inputData.ndim == 2:
+ return LLT_ROF_2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
+ elif inputData.ndim == 3:
+ return LLT_ROF_3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
+
+def LLT_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ float regularisation_parameterROF,
+ float regularisation_parameterLLT,
+ int iterations,
+ float time_marching_parameter):
+
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ #/* Run ROF-LLT iterations for 2D data */
+ LLT_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1)
+ return outputData
+
+def LLT_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ float regularisation_parameterROF,
+ float regularisation_parameterLLT,
+ int iterations,
+ float time_marching_parameter):
+
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
+
+ #/* Run ROF-LLT iterations for 3D data */
+ LLT_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0])
+ return outputData
+
#****************************************************************#
#**************Directional Total-variation FGP ******************#
#****************************************************************#
diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx
index 4a202d7..82d3e01 100644
--- a/Wrappers/Python/src/gpu_regularisers.pyx
+++ b/Wrappers/Python/src/gpu_regularisers.pyx
@@ -22,6 +22,7 @@ cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, i
cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
cdef extern void TV_SB_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int printM, int N, int M, int Z);
cdef extern void TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY);
+cdef extern void LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z);
cdef extern void NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z);
cdef extern void dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z);
cdef extern void Diffus4th_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int N, int M, int Z);
@@ -87,6 +88,12 @@ def TV_SB_GPU(inputData,
tolerance_param,
methodTV,
printM)
+# LLT-ROF model
+def LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter):
+ if inputData.ndim == 2:
+ return LLT_ROF_GPU2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
+ elif inputData.ndim == 3:
+ return LLT_ROF_GPU3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
# Total Generilised Variation (TGV)
def TGV_GPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst):
if inputData.ndim == 2:
@@ -324,6 +331,46 @@ def SBTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
return outputData
#***************************************************************#
+#************************ LLT-ROF model ************************#
+#***************************************************************#
+#************Joint LLT-ROF model for higher order **************#
+def LLT_ROF_GPU2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ float regularisation_parameterROF,
+ float regularisation_parameterLLT,
+ int iterations,
+ float time_marching_parameter):
+
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ # Running CUDA code here
+ LLT_ROF_GPU_main(&inputData[0,0], &outputData[0,0],regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1);
+ return outputData
+
+def LLT_ROF_GPU3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ float regularisation_parameterROF,
+ float regularisation_parameterLLT,
+ int iterations,
+ float time_marching_parameter):
+
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+
+ # Running CUDA code here
+ LLT_ROF_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0]);
+ return outputData
+
+
+#***************************************************************#
#***************** Total Generalised Variation *****************#
#***************************************************************#
def TGV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,