diff options
Diffstat (limited to 'Wrappers')
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m | 16 | ||||
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m | 16 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp | 32 |
3 files changed, 38 insertions, 26 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m index 0c331a4..ac8e1ba 100644 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m @@ -8,7 +8,7 @@ addpath(Path2); addpath(Path3); N = 512; -slices = 7; +slices = 15; vol3D = zeros(N,N,slices, 'single'); Ideal3D = zeros(N,N,slices, 'single'); Im = double(imread('lena_gray_512.tif'))/255; % loading image @@ -17,9 +17,7 @@ vol3D(:,:,i) = Im + .05*randn(size(Im)); Ideal3D(:,:,i) = Im; end vol3D(vol3D < 0) = 0; -figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image'); - - +figure; imshow(vol3D(:,:,7), [0 1]); title('Noisy image'); lambda_reg = 0.03; % regularsation parameter for all methods %% fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); @@ -143,6 +141,16 @@ rmseTGV = RMSE(Ideal3D(:),u_tgv(:)); fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)'); %% +% fprintf('Denoise using the TGV model (GPU) \n'); +% lambda_TGV = 0.03; % regularisation parameter +% alpha1 = 1.0; % parameter to control the first-order term +% alpha0 = 2.0; % parameter to control the second-order term +% iter_TGV = 500; % number of Primal-Dual iterations for TGV +% tic; u_tgv_gpu = TGV_GPU(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV); toc; +% rmseTGV = RMSE(Ideal3D(:),u_tgv_gpu(:)); +% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); +% figure; imshow(u_tgv_gpu(:,:,3), [0 1]); title('TGV denoised volume (GPU)'); +%% %>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index 14d3096..62e5834 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -5,7 +5,9 @@ fsep = '/'; Path1 = sprintf(['..' fsep 'mex_compile' fsep 'installed'], 1i); Path2 = sprintf(['..' fsep '..' fsep '..' fsep 'data' fsep], 1i); Path3 = sprintf(['..' fsep 'supp'], 1i); -addpath(Path1); addpath(Path2); addpath(Path3); +addpath(Path1); +addpath(Path2); +addpath(Path3); Im = double(imread('lena_gray_512.tif'))/255; % loading image u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; @@ -29,7 +31,7 @@ figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); % figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); %% fprintf('Denoise using the FGP-TV model (CPU) \n'); -iter_fgp = 1000; % number of FGP iterations +iter_fgp = 1300; % number of FGP iterations epsil_tol = 1.0e-06; % tolerance tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value @@ -39,8 +41,8 @@ figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); %% % fprintf('Denoise using the FGP-TV model (GPU) \n'); -% iter_fgp = 1000; % number of FGP iterations -% epsil_tol = 1.0e-05; % tolerance +% iter_fgp = 1300; % number of FGP iterations +% epsil_tol = 1.0e-06; % tolerance % tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; % figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); %% @@ -63,17 +65,17 @@ fprintf('Denoise using the TGV model (CPU) \n'); lambda_TGV = 0.045; % regularisation parameter alpha1 = 1.0; % parameter to control the first-order term alpha0 = 2.0; % parameter to control the second-order term -iter_TGV = 2000; % number of Primal-Dual iterations for TGV +iter_TGV = 1500; % number of Primal-Dual iterations for TGV tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; rmseTGV = (RMSE(u_tgv(:),Im(:))); fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)'); -%% + % fprintf('Denoise using the TGV model (GPU) \n'); % lambda_TGV = 0.045; % regularisation parameter % alpha1 = 1.0; % parameter to control the first-order term % alpha0 = 2.0; % parameter to control the second-order term -% iter_TGV = 2000; % number of Primal-Dual iterations for TGV +% iter_TGV = 1500; % number of Primal-Dual iterations for TGV % tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; % rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:))); % fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu); diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp index edb551d..1173282 100644 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp +++ b/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp @@ -21,18 +21,18 @@ limitations under the License. #include "TGV_GPU_core.h" /* CUDA implementation of Primal-Dual denoising method for - * Total Generilized Variation (TGV)-L2 model [1] (2D case only) + * Total Generilized Variation (TGV)-L2 model [1] (2D/3D) * * Input Parameters: - * 1. Noisy image (2D) (required) - * 2. lambda - regularisation parameter (required) - * 3. parameter to control the first-order term (alpha1) (default - 1) - * 4. parameter to control the second-order term (alpha0) (default - 0.5) - * 5. Number of Chambolle-Pock (Primal-Dual) iterations (default is 300) + * 1. Noisy image/volume (2D/3D) + * 2. lambda - regularisation parameter + * 3. parameter to control the first-order term (alpha1) + * 4. parameter to control the second-order term (alpha0) + * 5. Number of Chambolle-Pock (Primal-Dual) iterations * 6. Lipshitz constant (default is 12) * * Output: - * Filtered/regulariaed image + * Filtered/regularised image * * References: * [1] K. Bredies "Total Generalized Variation" @@ -44,7 +44,7 @@ void mexFunction( { int number_of_dims, iter; - mwSize dimX, dimY; + mwSize dimX, dimY, dimZ; const mwSize *dim_array; float *Input, *Output=NULL, lambda, alpha0, alpha1, L2; @@ -57,8 +57,8 @@ void mexFunction( Input = (float *) mxGetData(prhs[0]); /*noisy image (2D) */ lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */ alpha1 = 1.0f; /* parameter to control the first-order term */ - alpha0 = 0.5f; /* parameter to control the second-order term */ - iter = 300; /* Iterations number */ + alpha0 = 2.0f; /* parameter to control the second-order term */ + iter = 500; /* Iterations number */ L2 = 12.0f; /* Lipshitz constant */ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } @@ -68,12 +68,14 @@ void mexFunction( if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */ /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; if (number_of_dims == 2) { - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - /* running the function */ - TGV_GPU_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY); + dimZ = 1; /*2D case*/ + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); } - if (number_of_dims == 3) {mexErrMsgTxt("Only 2D images accepted");} + if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + + /* running the function */ + TGV_GPU_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY, dimZ); } |