summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/NeighbSearch2D_test.c207
1 files changed, 207 insertions, 0 deletions
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NeighbSearch2D_test.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NeighbSearch2D_test.c
new file mode 100644
index 0000000..d94b521
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/NeighbSearch2D_test.c
@@ -0,0 +1,207 @@
+#include "mex.h"
+#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+
+#define EPS 1.0000e-12
+
+/* C implementation of the spatial-dependent histogram
+ * currently not optimal memory-wise
+ *
+ *
+ * Input Parameters:
+ * 1. 2D grayscale image (N x N)
+ * 2. Number of histogram bins (M)
+ * 4. Similarity window (half-size)
+ *
+ * Output:
+ * 1. Filtered Image (N x N)
+ *
+ *
+ * compile from Matlab with:
+ * mex NLTV_SB_fast.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+ *
+ * Im = double(imread('barb.bmp'))/255; % loading image
+ * u0 = Im + .05*randn(size(Im)); u0(u0<0) = 0; % adding noise
+ * [Filtered, theta, I1, J1] = NLTV_SB_fast(single(u0), 7, 7, 20, 0.1);
+ * D. Kazantsev
+ */
+
+float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
+
+/*2D functions */
+float Indeces2D(float *Aorig, unsigned short *H_i, unsigned short *H_j, float *Weights, int i, int j, int dimY, int dimX, int NumNeighb, int SearchWindow, int SimilarWin, float h2);
+float NLM_ST_H1(float *Aorig, float *Output, unsigned short *H_i, unsigned short *H_j, float *Weights, int i, int j, int dimX, int dimY, int NumNeighb, float beta, int IterNumb);
+
+
+
+float denoise2D(float *Aorig, float *Output, unsigned short *H_i, unsigned short *H_j, float *Weights, int i, int j, int dimY, int dimX, int NumNeighb);
+/**************************************************/
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+{
+ int number_of_dims, i, j, k, dimX, dimY, dimZ, SearchWindow, SimilarWin, NumNeighb,kk;
+ unsigned short *H_i=NULL, *H_j=NULL;
+ const int *dim_array;
+ float *A, *Output, *Weights, h, h2, lambda;
+ int dim_array2[3];
+
+ dim_array = mxGetDimensions(prhs[0]);
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ A = (float *) mxGetData(prhs[0]); /* a 2D image or a set of 2D images (3D stack) */
+ SearchWindow = (int) mxGetScalar(prhs[1]); /* Large Searching window to find and cluster intensities */
+ SimilarWin = (int) mxGetScalar(prhs[2]); /* Similarity window */
+ NumNeighb = (int) mxGetScalar(prhs[3]); /* the total number of neighbours to take */
+ h = (float) mxGetScalar(prhs[4]); /* NLM parameter */
+
+ h2 = h*h;
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+ dim_array2[0] = dimX; dim_array2[1] = dimY; dim_array2[2] = NumNeighb; /* 2D case */
+
+ /*****2D INPUT *****/
+ if (number_of_dims == 2) {
+ dimZ = 0;
+ H_i = (unsigned short*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL));
+ H_j = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL));
+ Weights = (float*)mxGetPr(plhs[2] = mxCreateNumericArray(3, dim_array2, mxSINGLE_CLASS, mxREAL));
+ Output = (float*)mxGetPr(plhs[3] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /* for each pixel store indeces of the most similar neighbours (patches) */
+#pragma omp parallel for shared (A, Output, Weights, H_i, H_j) private(i,j)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ Indeces2D(A, H_i, H_j, Weights, i, j, dimX, dimY, NumNeighb, SearchWindow, SimilarWin, h2);
+ // denoise2D(A, Output, H_i, H_j, Weights, i, j, dimX, dimY, NumNeighb);
+ NLM_ST_H1(A, Output, H_i, H_j, Weights, i, j, dimX, dimY, NumNeighb, 0.01f, 1);
+ }}
+ }
+ /*****3D INPUT *****/
+ /****************************************************/
+ if (number_of_dims == 3) {
+ }
+}
+
+
+float Indeces2D(float *Aorig, unsigned short *H_i, unsigned short *H_j, float *Weights, int i, int j, int dimY, int dimX, int NumNeighb, int SearchWindow, int SimilarWin, float h2)
+{
+ int i1, j1, i_m, j_m, i_c, j_c, i2, j2, i3, j3, k, counter, x, y;
+ float *Weight_Vec, normsum, temp;
+ unsigned short *ind_i, *ind_j, temp_i, temp_j;
+
+
+ Weight_Vec = (float*) calloc((2*SearchWindow + 1)*(2*SearchWindow + 1), sizeof(float));
+ ind_i = (unsigned short*) calloc((2*SearchWindow + 1)*(2*SearchWindow + 1), sizeof(unsigned short));
+ ind_j = (unsigned short*) calloc((2*SearchWindow + 1)*(2*SearchWindow + 1), sizeof(unsigned short));
+
+ counter = 0;
+ for(i_m=-SearchWindow; i_m<=SearchWindow; i_m++) {
+ for(j_m=-SearchWindow; j_m<=SearchWindow; j_m++) {
+ i1 = i+i_m;
+ j1 = j+j_m;
+ if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) {
+ normsum = 0;
+ for(i_c=-SimilarWin; i_c<=SimilarWin; i_c++) {
+ for(j_c=-SimilarWin; j_c<=SimilarWin; j_c++) {
+ i2 = i1 + i_c;
+ j2 = j1 + j_c;
+ i3 = i + i_c;
+ j3 = j + j_c;
+ if (((i2 >= 0) && (i2 < dimX)) && ((j2 >= 0) && (j2 < dimY))) {
+ if (((i3 >= 0) && (i3 < dimX)) && ((j3 >= 0) && (j3 < dimY))) {
+ normsum += pow(Aorig[i3*dimY+j3] - Aorig[i2*dimY+j2], 2);
+ }}
+ }}
+ /* writing temporarily into vectors */
+ if (normsum > EPS) Weight_Vec[counter] = exp(-normsum/h2);
+ ind_i[counter] = i1;
+ ind_j[counter] = j1;
+ counter ++;
+ }
+ }}
+ /* do sorting to choose the most prominent weights [LOW -> HIGH]*/
+ /* and re-arrange indeces accordingly */
+ for(x=0; x < counter; x++) {
+ for(y=0; y < counter - 1; y++) {
+ if(Weight_Vec[y] < Weight_Vec[y+1]) {
+ temp = Weight_Vec[y+1];
+ temp_i = ind_i[y+1];
+ temp_j = ind_j[y+1];
+ Weight_Vec[y+1] = Weight_Vec[y];
+ Weight_Vec[y] = temp;
+ ind_i[y+1] = ind_i[y];
+ ind_i[y] = temp_i;
+ ind_j[y+1] = ind_j[y];
+ ind_j[y] = temp_j;
+ }}} /*sorting loop end*/
+
+ // printf("%f %i %i \n", Weight_Vec[10], ind_i[10], ind_j[10]);
+ /*now select NumNeighb more prominent weights */
+ for(x=0; x < NumNeighb; x++) {
+ H_i[(dimX*dimY*x) + i*dimY+j] = ind_i[x];
+ H_j[(dimX*dimY*x) + i*dimY+j] = ind_j[x];
+ Weights[(dimX*dimY*x) + i*dimY+j] = Weight_Vec[x];
+ }
+
+ free(ind_i);
+ free(ind_j);
+ free(Weight_Vec);
+ return 1;
+}
+
+/* a test if NLM denoising works */
+float denoise2D(float *Aorig, float *Output, unsigned short *H_i, unsigned short *H_j, float *Weights, int i, int j, int dimY, int dimX, int NumNeighb)
+{
+ int x, i1, j1;
+ float value = 0.0f, normweight = 0.0f;
+
+ for(x=0; x < NumNeighb; x++) {
+ i1 = (H_i[(dimX*dimY*x) + i*dimY+j]);
+ j1 = (H_j[(dimX*dimY*x) + i*dimY+j]);
+ value += Aorig[i1*dimY+j1]*Weights[(dimX*dimY*x) + i*dimY+j];
+ normweight += Weights[(dimX*dimY*x) + i*dimY+j];
+ }
+ if (normweight != 0) Output[i*dimY+j] = value/normweight;
+ else Output[i*dimY+j] = 0.0f;
+
+ return *Output;
+}
+
+/***********<<<<Main Function for ST NLM - H1 penalty>>>>**********/
+float NLM_ST_H1(float *Aorig, float *Output, unsigned short *H_i, unsigned short *H_j, float *Weights, int i, int j, int dimX, int dimY, int NumNeighb, float beta, int IterNumb)
+{
+ int x, i1, j1;
+ float value = 0.0f, normweight = 0.0f;
+
+ for(x=0; x < NumNeighb; x++) {
+ i1 = (H_i[(dimX*dimY*x) + i*dimY+j]);
+ j1 = (H_j[(dimX*dimY*x) + i*dimY+j]);
+ value += Aorig[i1*dimY+j1]*Weights[(dimX*dimY*x) + i*dimY+j];
+ normweight += Weights[(dimX*dimY*x) + i*dimY+j];
+ }
+
+// if (normweight != 0) Output[i*dimY+j] = value/normweight;
+// else Output[i*dimY+j] = 0.0f;
+
+ Output[i*dimY+j] = (beta*Aorig[i*dimY+j] + value)/(beta + normweight);
+ return *Output;
+}
+
+
+
+/* General Functions */
+/*****************************************************************/
+/* Copy Image */
+float copyIm(float *A, float *B, int dimX, int dimY, int dimZ)
+{
+ int j;
+#pragma omp parallel for shared(A, B) private(j)
+ for(j=0; j<dimX*dimY*dimZ; j++) B[j] = A[j];
+ return *B;
+}