diff options
Diffstat (limited to 'Wrappers')
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m | 3 | ||||
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m | 8 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/compileCPU_mex.m | 3 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c | 69 |
4 files changed, 81 insertions, 2 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m index 973d060..84889d7 100644 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m @@ -21,6 +21,7 @@ fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); tau_rof = 0.0025; % time-marching constant iter_rof = 300; % number of ROF iterations tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; +energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg); % get energy function value figure; imshow(u_rof(:,:,15), [0 1]); title('ROF-TV denoised volume (CPU)'); %% % fprintf('Denoise a volume using the ROF-TV model (GPU) \n'); @@ -33,6 +34,7 @@ fprintf('Denoise a volume using the FGP-TV model (CPU) \n'); iter_fgp = 300; % number of FGP iterations epsil_tol = 1.0e-05; % tolerance tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; +energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg); % get energy function value figure; imshow(u_fgp(:,:,15), [0 1]); title('FGP-TV denoised volume (CPU)'); %% % fprintf('Denoise a volume using the FGP-TV model (GPU) \n'); @@ -45,6 +47,7 @@ fprintf('Denoise a volume using the SB-TV model (CPU) \n'); iter_sb = 150; % number of SB iterations epsil_tol = 1.0e-05; % tolerance tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; +energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg); % get energy function value figure; imshow(u_sb(:,:,15), [0 1]); title('SB-TV denoised volume (CPU)'); %% % fprintf('Denoise a volume using the SB-TV model (GPU) \n'); diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index 4a0a19a..526d21c 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -12,13 +12,14 @@ lambda_reg = 0.03; % regularsation parameter for all methods %% fprintf('Denoise using the ROF-TV model (CPU) \n'); tau_rof = 0.0025; % time-marching constant -iter_rof = 2000; % number of ROF iterations +iter_rof = 750; % number of ROF iterations tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc; +energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg); % get energy function value figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); %% % fprintf('Denoise using the ROF-TV model (GPU) \n'); % tau_rof = 0.0025; % time-marching constant -% iter_rof = 2000; % number of ROF iterations +% iter_rof = 750; % number of ROF iterations % tic; u_rofG = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof); toc; % figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); %% @@ -26,7 +27,9 @@ fprintf('Denoise using the FGP-TV model (CPU) \n'); iter_fgp = 1000; % number of FGP iterations epsil_tol = 1.0e-06; % tolerance tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; +energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg); % get energy function value figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); + %% % fprintf('Denoise using the FGP-TV model (GPU) \n'); % iter_fgp = 1000; % number of FGP iterations @@ -38,6 +41,7 @@ fprintf('Denoise using the SB-TV model (CPU) \n'); iter_sb = 150; % number of SB iterations epsil_tol = 1.0e-06; % tolerance tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc; +energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg); % get energy function value figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); %% % fprintf('Denoise using the SB-TV model (GPU) \n'); diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex.m b/Wrappers/Matlab/mex_compile/compileCPU_mex.m index ec799bd..a445e99 100644 --- a/Wrappers/Matlab/mex_compile/compileCPU_mex.m +++ b/Wrappers/Matlab/mex_compile/compileCPU_mex.m @@ -23,6 +23,9 @@ movefile TNV.mex* ../installed/ mex NonlDiff.c Diffusion_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" movefile NonlDiff.mex* ../installed/ +mex TV_energy.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +movefile TV_energy.mex* ../installed/ + delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* CCPiDefines.h fprintf('%s \n', 'All successfully compiled!'); diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c new file mode 100644 index 0000000..421bd4c --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c @@ -0,0 +1,69 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "matrix.h" +#include "mex.h" +#include "utils.h" +/* + * Function to calculate TV energy value with respect to the denoising variational problem + * + * Input: + * 1. Denoised Image/volume + * 2. Original (noisy) Image/volume + * 3. lambda - regularisation parameter + * + * Output: + * 1. Energy function value + * + */ +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, dimX, dimY, dimZ; + const int *dim_array; + float *Input, *Input0, lambda; + + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + dim_array = mxGetDimensions(prhs[0]); + + /*Handling Matlab input data*/ + if ((nrhs != 3)) mexErrMsgTxt("3 inputs: Two images or volumes of the same size required, estimated and the original (noisy), regularisation parameter"); + + Input = (float *) mxGetData(prhs[0]); /* Denoised Image/volume */ + Input0 = (float *) mxGetData(prhs[1]); /* Original (noisy) Image/volume */ + lambda = (float) mxGetScalar(prhs[2]); /* regularisation parameter */ + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + + /*output energy function value */ + plhs[0] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL); + float *funcvalA = (float *) mxGetData(plhs[0]); + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + if (number_of_dims == 2) { + TV_energy2D(Input, Input0, funcvalA, lambda, dimX, dimY); + } + if (number_of_dims == 3) { + TV_energy3D(Input, Input0, funcvalA, lambda, dimX, dimY, dimZ); + } +} |