summaryrefslogtreecommitdiffstats
path: root/demo/Demo2.m
diff options
context:
space:
mode:
Diffstat (limited to 'demo/Demo2.m')
-rw-r--r--demo/Demo2.m156
1 files changed, 156 insertions, 0 deletions
diff --git a/demo/Demo2.m b/demo/Demo2.m
new file mode 100644
index 0000000..3c1592c
--- /dev/null
+++ b/demo/Demo2.m
@@ -0,0 +1,156 @@
+% Demonstration of tomographic reconstruction from noisy and corrupted by
+% artifacts undersampled projection data using Students t penalty
+% This is the missing wedge demo, run it after DemoFISTA_StudT
+
+% see ReadMe file for instructions
+% clear all
+% close all
+
+load phantom_bone512.mat % load the phantom
+load my_red_yellowMAP.mat % load the colormap
+% load sino1.mat; % load noisy sinogram
+
+N = 512; % the size of the tomographic image NxN
+theta = 1:1:180; % acquisition angles (in parallel beam from 0 to Pi)
+theta_rad = theta*(pi/180); % conversion to radians
+P = 2*ceil(N/sqrt(2))+1; % the size of the detector array
+ROI = find(phantom > 0.0);
+
+add_wedges % apply the missing wedge mask
+
+%%
+fprintf('%s\n', 'Direct reconstruction using FBP...');
+FBP_1 = iradon(MW_sino_artifacts', theta, N);
+
+fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:)));
+
+figure(1);
+% set(gcf, 'Position', get(0,'Screensize'));
+subplot_tight(1,2,1, [0.05 0.05]); imshow(FBP_1,[-2 0.8]); title('FBP reconstruction of noisy and corrupted by artifacts sinogram'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - FBP_1).^2,[0 0.1]); title('residual: (ideal phantom - FBP)^2'); colorbar;
+colormap(cmapnew);
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...');
+clear params
+% define parameters
+params.sino = MW_sino_artifacts;
+params.N = N; % image size
+params.angles = theta_rad; % angles in radians
+params.iterFISTA = 132; %max number of outer iterations
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.show = 0; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+params.weights = Dweights; % statistical weighting
+tic; [X_FISTA, error_FISTA, obj_FISTA, sinoFISTA] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction:', min(error_FISTA(:)));
+
+figure(2); clf
+%set(gcf, 'Position', get(0,'Screensize'));
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA,[0 0.6]); title('FISTA-LS reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+figure(3); clf
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...');
+clear params
+% define parameters
+params.sino = MW_sino_artifacts;
+params.N = N; % image size
+params.angles = theta_rad; % angles in radians
+params.iterFISTA = 200; % max number of outer iterations
+params.lambdaTV = 5.39e-05; % regularization parameter for TV problem
+params.tol = 1.0e-04; % tolerance to terminate TV iterations
+params.iterTV = 20; % the max number of TV iterations
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.weights = Dweights; % statistical weighting
+params.show = 0; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+tic; [X_FISTA_TV, error_FISTA_TV, obj_FISTA_TV, sinoFISTA_TV] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction:', min(error_FISTA_TV(:)));
+
+figure(4); clf
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_TV,[0 0.6]); title('FISTA-LS-TV reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_TV).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+figure(5); clf
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_TV); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_TV); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...');
+clear params
+% define parameters
+params.sino = MW_sino_artifacts;
+params.N = N; % image size
+params.angles = theta_rad; % angles in radians
+params.iterFISTA = 250; % max number of outer iterations
+params.lambdaTV = 0.0019; % regularization parameter for TV problem
+params.tol = 1.0e-04; % tolerance to terminate TV iterations
+params.iterTV = 20; % the max number of TV iterations
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.weights = Dweights; % statistical weighting
+params.lambdaR_L1 = 0.002; % parameter to sparsify the "rings vector"
+params.show = 0; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+tic; [X_FISTA_GH_TV, error_FISTA_GH_TV, obj_FISTA_GH_TV, sinoFISTA_GH_TV] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:)));
+
+figure(6); clf
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_GH_TV,[0 0.6]); title('FISTA-GH-TV reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]);imshow((phantom - X_FISTA_GH_TV).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+
+figure(7); clf
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_GH_TV); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_GH_TV); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
+clear params
+% define parameters
+params.sino = MW_sino_artifacts;
+params.N = N; % image size
+params.angles = theta_rad; % angles in radians
+params.iterFISTA = 80; % max number of outer iterations
+% params.L_const = 80000; % Lipshitz constant (can be chosen manually to accelerate convergence)
+params.lambdaTV = 0.0016; % regularization parameter for TV problem
+params.tol = 1.0e-04; % tolerance to terminate TV iterations
+params.iterTV = 20; % the max number of TV iterations
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.weights = Dweights; % statistical weighting
+params.fidelity = 'student'; % selecting students t fidelity
+params.show = 0; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+tic; [X_FISTA_student_TV, error_FISTA_student_TV, obj_FISTA_student_TV, sinoFISTA_student_TV] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:)));
+
+figure(8);
+set(gcf, 'Position', get(0,'Screensize'));
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_student_TV,[0 0.6]); title('FISTA-Student-TV reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_student_TV).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+
+figure(9);
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_student_TV); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_student_TV); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+% print all RMSE's
+fprintf('%s\n', '--------------------------------------------');
+fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_2(:), phantom(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction:', min(error_FISTA(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction:', min(error_FISTA_TV(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:)));
+% \ No newline at end of file