diff options
Diffstat (limited to 'main_func')
-rw-r--r-- | main_func/FISTA_REC.m | 267 |
1 files changed, 132 insertions, 135 deletions
diff --git a/main_func/FISTA_REC.m b/main_func/FISTA_REC.m index 6987dca..1e4228d 100644 --- a/main_func/FISTA_REC.m +++ b/main_func/FISTA_REC.m @@ -15,7 +15,7 @@ function [X, output] = FISTA_REC(params) %----------------General Parameters------------------------ % - .proj_geom (geometry of the projector) [required] % - .vol_geom (geometry of the reconstructed object) [required] -% - .sino (vectorized in 2D or 3D sinogram) [required] +% - .sino (2D or 3D sinogram) [required] % - .iterFISTA (iterations for the main loop, default 40) % - .L_const (Lipschitz constant, default Power method) ) % - .X_ideal (ideal image, if given) @@ -94,45 +94,36 @@ else weights = ones(size(sino)); end if (isfield(params,'fidelity')) - studentt = 0; + studentt = 0; if (strcmp(params.fidelity,'studentt') == 1) - studentt = 1; - lambdaR_L1 = 0; - end + studentt = 1; + end else - studentt = 0; + studentt = 0; end if (isfield(params,'L_const')) L_const = params.L_const; else % using Power method (PM) to establish L constant - if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'parallel3d')) - % for parallel geometry we can do just one slice - fprintf('%s \n', 'Calculating Lipshitz constant for parallel beam geometry...'); + fprintf('%s %s %s \n', 'Calculating Lipshitz constant for',proj_geom.type, 'beam geometry...'); + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % for 2D geometry we can do just one selected slice niter = 15; % number of iteration for the PM x1 = rand(N,N,1); sqweight = sqrt(weights(:,:,1)); - proj_geomT = proj_geom; - proj_geomT.DetectorRowCount = 1; - vol_geomT = vol_geom; - vol_geomT.GridSliceCount = 1; - [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); - y = sqweight.*y; - astra_mex_data3d('delete', sino_id); - + [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom); + y = sqweight.*y'; + astra_mex_data2d('delete', sino_id); for i = 1:niter - [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geomT, vol_geomT); + [x1] = astra_create_backprojection_cuda((sqweight.*y)', proj_geom, vol_geom); s = norm(x1(:)); x1 = x1./s; - [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); - y = sqweight.*y; - astra_mex_data3d('delete', sino_id); - astra_mex_data3d('delete', id); + [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom); + y = sqweight.*y'; + astra_mex_data2d('delete', sino_id); end - %clear proj_geomT vol_geomT - else - % divergen beam geometry - fprintf('%s \n', 'Calculating Lipshitz constant for divergen beam geometry... will take some time!'); + elseif (strcmp(proj_geom.type,'cone') || strcmp(proj_geom.type,'parallel3d') || strcmp(proj_geom.type,'parallel3d_vec') || strcmp(proj_geom.type,'cone_vec')) + % 3D geometry niter = 8; % number of iteration for PM x1 = rand(N,N,SlicesZ); sqweight = sqrt(weights); @@ -150,6 +141,8 @@ else astra_mex_data3d('delete', id); end clear x1 + else + error('%s \n', 'No suitable geometry has been found!'); end L_const = s; end @@ -272,28 +265,10 @@ else slice = 1; end if (isfield(params,'initialize')) - % a 'warm start' with SIRT method - % Create a data object for the reconstruction - rec_id = astra_mex_data3d('create', '-vol', vol_geom); - - sinogram_id = astra_mex_data3d('create', '-proj3d', proj_geom, sino); - - % Set up the parameters for a reconstruction algorithm using the GPU - cfg = astra_struct('SIRT3D_CUDA'); - cfg.ReconstructionDataId = rec_id; - cfg.ProjectionDataId = sinogram_id; - - % Create the algorithm object from the configuration structure - alg_id = astra_mex_algorithm('create', cfg); - astra_mex_algorithm('iterate', alg_id, 35); - % Get the result - X = astra_mex_data3d('get', rec_id); - - % Clean up. Note that GPU memory is tied up in the algorithm object, - % and main RAM in the data objects. - astra_mex_algorithm('delete', alg_id); - astra_mex_data3d('delete', rec_id); - astra_mex_data3d('delete', sinogram_id); + X = params.initialize; + if ((size(X,1) ~= N) || (size(X,2) ~= N) || (size(X,3) ~= SlicesZ)) + error('%s \n', 'The initialized volume has different dimensions!'); + end else X = zeros(N,N,SlicesZ, 'single'); % storage for the solution end @@ -345,16 +320,19 @@ if (subsets == 0) t_old = t; r_old = r; - % if the geometry is parallel use slice-by-slice projection-backprojection routine - if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'parallel3d')) + + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % if geometry is 2D use slice-by-slice projection-backprojection routine sino_updt = zeros(size(sino),'single'); for kkk = 1:SlicesZ - [sino_id, sino_updt(:,:,kkk)] = astra_create_sino3d_cuda(X_t(:,:,kkk), proj_geomT, vol_geomT); - astra_mex_data3d('delete', sino_id); + [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geom, vol_geom); + sino_updt(:,:,kkk) = sinoT'; + astra_mex_data2d('delete', sino_id); end else - % for divergent 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8) + % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8) [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); + astra_mex_data3d('delete', sino_id); end if (lambdaR_L1 > 0) @@ -368,40 +346,36 @@ if (subsets == 0) end r = r_x - (1./L_const).*vec; objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output - else - if (studentt == 1) - % artifacts removal with Students t penalty - residual = weights.*(sino_updt - sino); - for kkk = 1:SlicesZ - res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram + elseif (studentt > 0) + % artifacts removal with Students t penalty + residual = weights.*(sino_updt - sino); + for kkk = 1:SlicesZ + res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram %s = 100; %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec); [ff, gr] = studentst(res_vec, 1); residual(:,:,kkk) = reshape(gr, Detectors, anglesNumb); - end - objective(i) = ff; % for the objective function output - else + end + objective(i) = ff; % for the objective function output + else % no ring removal (LS model) residual = weights.*(sino_updt - sino); - objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output - end - end + objective(i) = 0.5*norm(residual(:)); % for the objective function output + end - % if the geometry is parallel use slice-by-slice projection-backprojection routine - if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'parallel3d')) + % if the geometry is 2D use slice-by-slice projection-backprojection routine + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) x_temp = zeros(size(X),'single'); for kkk = 1:SlicesZ - [id, x_temp(:,:,kkk)] = astra_create_backprojection3d_cuda(squeeze(residual(:,:,kkk)), proj_geomT, vol_geomT); - astra_mex_data3d('delete', id); + [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residual(:,:,kkk))', proj_geom, vol_geom); end else [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom); + astra_mex_data3d('delete', id); end X = X_t - (1/L_const).*x_temp; - astra_mex_data3d('delete', sino_id); - astra_mex_data3d('delete', id); - % regularization + % ----------------Regularization part------------------------% if (lambdaFGP_TV > 0) % FGP-TV regularization if ((strcmp('2D', Dimension) == 1)) @@ -510,95 +484,121 @@ if (subsets == 0) end end else - % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than classical) + % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than the classical version) t = 1; X_t = X; proj_geomSUB = proj_geom; - r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors r_x = r; % another ring variable residual2 = zeros(size(sino),'single'); + sino_updt_FULL = zeros(size(sino),'single'); % Outer FISTA iterations loop for i = 1:iterFISTA - % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required - % one solution is to work with a full sinogram at times - if ((i >= 3) && (lambdaR_L1 > 0)) - [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom); - astra_mex_data3d('delete', sino_id2); + if ((i > 1) && (lambdaR_L1 > 0)) + % in order to make Group-Huber fidelity work with ordered subsets + % we still need to work with full sinogram + + % the offset variable must be calculated for the whole + % updated sinogram - sino_updt_FULL + for kkk = 1:anglesNumb + residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt_FULL(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); + end + + r_old = r; + vec = sum(residual2,2); + if (SlicesZ > 1) + vec = squeeze(vec(:,1,:)); + end + r = r_x - (1./L_const).*vec; % update ring variable end % subsets loop counterInd = 1; + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % if geometry is 2D use slice-by-slice projection-backprojection routine + for kkk = 1:SlicesZ + [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geomSUB, vol_geom); + sino_updt_Sub(:,:,kkk) = sinoT'; + astra_mex_data2d('delete', sino_id); + end + else + % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8) + [sino_id, sino_updt_Sub] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); + astra_mex_data3d('delete', sino_id); + end for ss = 1:subsets X_old = X; t_old = t; - r_old = r; numProjSub = binsDiscr(ss); % the number of projections per subset + sino_updt_Sub = zeros(Detectors, numProjSub, SlicesZ,'single'); CurrSubIndeces = IndicesReorg(counterInd:(counterInd + numProjSub - 1)); % extract indeces attached to the subset proj_geomSUB.ProjectionAngles = angles(CurrSubIndeces); - if (lambdaR_L1 > 0) - - % the ring removal part (Group-Huber fidelity) - % first 2 iterations do additional work reconstructing whole dataset to ensure - % the stablility - if (i < 3) - [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); - astra_mex_data3d('delete', sino_id2); - else - [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); - end - - for kkk = 1:anglesNumb - residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt2(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % if geometry is 2D use slice-by-slice projection-backprojection routine + for kkk = 1:SlicesZ + [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geomSUB, vol_geom); + sino_updt_Sub(:,:,kkk) = sinoT'; + astra_mex_data2d('delete', sino_id); end + else + % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8) + [sino_id, sino_updt_Sub] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); + astra_mex_data3d('delete', sino_id); + end + + if (lambdaR_L1 > 0) + % Group-Huber fidelity (ring removal) + - residual = zeros(Detectors, numProjSub, SlicesZ,'single'); + residualSub = zeros(Detectors, numProjSub, SlicesZ,'single'); % residual for a chosen subset for kkk = 1:numProjSub indC = CurrSubIndeces(kkk); - if (i < 3) - residual(:,kkk,:) = squeeze(residual2(:,indC,:)); - else - residual(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); - end + residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); + sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram end - vec = sum(residual2,2); - if (SlicesZ > 1) - vec = squeeze(vec(:,1,:)); + + elseif (studentt > 0) + % student t data fidelity + + % artifacts removal with Students t penalty + residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:))); + + for kkk = 1:SlicesZ + res_vec = reshape(residualSub(:,:,kkk), Detectors*numProjSub, 1); % 1D vectorized sinogram + %s = 100; + %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec); + [ff, gr] = studentst(res_vec, 1); + residualSub(:,:,kkk) = reshape(gr, Detectors, numProjSub); end - r = r_x - (1./L_const).*vec; + objective(i) = ff; % for the objective function output else - [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); - - if (studentt == 1) - % artifacts removal with Students t penalty - residual = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt - squeeze(sino(:,CurrSubIndeces,:))); - - for kkk = 1:SlicesZ - res_vec = reshape(residual(:,:,kkk), Detectors*numProjSub, 1); % 1D vectorized sinogram - %s = 100; - %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec); - [ff, gr] = studentst(res_vec, 1); - residual(:,:,kkk) = reshape(gr, Detectors, numProjSub); - end - objective(i) = ff; % for the objective function output - else - % no ring removal (LS model) - residual = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt - squeeze(sino(:,CurrSubIndeces,:))); - end + % PWLS model + + residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:))); + objective(i) = 0.5*norm(residualSub(:)); % for the objective function output end + - [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geomSUB, vol_geom); + % perform backprojection of a subset + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % if geometry is 2D use slice-by-slice projection-backprojection routine + x_temp = zeros(size(X),'single'); + for kkk = 1:SlicesZ + [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residualSub(:,:,kkk))', proj_geomSUB, vol_geom); + end + else + [id, x_temp] = astra_create_backprojection3d_cuda(residualSub, proj_geomSUB, vol_geom); + astra_mex_data3d('delete', id); + end X = X_t - (1/L_const).*x_temp; - astra_mex_data3d('delete', sino_id); - astra_mex_data3d('delete', id); - % regularization + % ----------------Regularization part------------------------% if (lambdaFGP_TV > 0) % FGP-TV regularization if ((strcmp('2D', Dimension) == 1)) @@ -680,20 +680,17 @@ else end end - if (lambdaR_L1 > 0) - r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector - end - t = (1 + sqrt(1 + 4*t^2))/2; % updating t X_t = X + ((t_old-1)/t).*(X - X_old); % updating X - - if (lambdaR_L1 > 0) - r_x = r + ((t_old-1)/t).*(r - r_old); % updating r - end - counterInd = counterInd + numProjSub; end + % working with a 'ring vector' + if (lambdaR_L1 > 0) + r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector + r_x = r + ((t_old-1)/t).*(r - r_old); % updating r + end + if (show == 1) figure(10); imshow(X(:,:,slice), [0 maxvalplot]); if (lambdaR_L1 > 0) |