summaryrefslogtreecommitdiffstats
path: root/src/Python
diff options
context:
space:
mode:
Diffstat (limited to 'src/Python')
-rw-r--r--src/Python/fista_module.cpp266
1 files changed, 232 insertions, 34 deletions
diff --git a/src/Python/fista_module.cpp b/src/Python/fista_module.cpp
index 2492884..d890b10 100644
--- a/src/Python/fista_module.cpp
+++ b/src/Python/fista_module.cpp
@@ -3,7 +3,7 @@ This work is part of the Core Imaging Library developed by
Visual Analytics and Imaging System Group of the Science Technology
Facilities Council, STFC
-Copyright 2017 Daniil Kazanteev
+Copyright 2017 Daniil Kazantsev
Copyright 2017 Srikanth Nagella, Edoardo Pasca
Licensed under the Apache License, Version 2.0 (the "License");
@@ -28,6 +28,8 @@ limitations under the License.
#include "SplitBregman_TV_core.h"
#include "FGP_TV_core.h"
+#include "LLT_model_core.h"
+#include "utils.h"
@@ -131,6 +133,18 @@ T * mxGetData(const np::ndarray pm) {
return reinterpret_cast<T *>(prhs[0]);
}
+template<typename T>
+np::ndarray zeros(int dims, int * dim_array, T el) {
+ bp::tuple shape;
+ if (dims == 3)
+ shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]);
+ else if (dims == 2)
+ shape = bp::make_tuple(dim_array[0], dim_array[1]);
+ np::dtype dtype = np::dtype::get_builtin<T>();
+ np::ndarray zz = np::zeros(shape, dtype);
+ return zz;
+}
+
@@ -169,7 +183,6 @@ bp::list mexFunction(np::ndarray input) {
}
}
-
bp::list result;
result.append<int>(number_of_dims);
@@ -189,14 +202,14 @@ bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsi
// the result is in the following list
bp::list result;
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
- const int *dim_array;
+ int number_of_dims, dimX, dimY, dimZ, ll, j, count;
+ //const int *dim_array;
float *A, *U = NULL, *U_old = NULL, *Dx = NULL, *Dy = NULL, *Dz = NULL, *Bx = NULL, *By = NULL, *Bz = NULL, lambda, mu, epsil, re, re1, re_old;
//number_of_dims = mxGetNumberOfDimensions(prhs[0]);
//dim_array = mxGetDimensions(prhs[0]);
- int number_of_dims = input.get_nd();
+ number_of_dims = input.get_nd();
int dim_array[3];
dim_array[0] = input.shape(0);
@@ -252,26 +265,26 @@ bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsi
bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
np::dtype dtype = np::dtype::get_builtin<float>();
- np::ndarray npU = np::zeros(shape, dtype);
+ np::ndarray npU = np::zeros(shape, dtype);
np::ndarray npU_old = np::zeros(shape, dtype);
- np::ndarray npDx = np::zeros(shape, dtype);
- np::ndarray npDy = np::zeros(shape, dtype);
- np::ndarray npBx = np::zeros(shape, dtype);
- np::ndarray npBy = np::zeros(shape, dtype);
+ np::ndarray npDx = np::zeros(shape, dtype);
+ np::ndarray npDy = np::zeros(shape, dtype);
+ np::ndarray npBx = np::zeros(shape, dtype);
+ np::ndarray npBy = np::zeros(shape, dtype);
- U = reinterpret_cast<float *>(npU.get_data());
+ U = reinterpret_cast<float *>(npU.get_data());
U_old = reinterpret_cast<float *>(npU_old.get_data());
- Dx = reinterpret_cast<float *>(npDx.get_data());
- Dy = reinterpret_cast<float *>(npDy.get_data());
- Bx = reinterpret_cast<float *>(npBx.get_data());
- By = reinterpret_cast<float *>(npBy.get_data());
+ Dx = reinterpret_cast<float *>(npDx.get_data());
+ Dy = reinterpret_cast<float *>(npDy.get_data());
+ Bx = reinterpret_cast<float *>(npBx.get_data());
+ By = reinterpret_cast<float *>(npBy.get_data());
+
-
copyIm(A, U, dimX, dimY, dimZ); /*initialize */
/* begin outer SB iterations */
- for (ll = 0; ll<iter; ll++) {
+ for (ll = 0; ll < iter; ll++) {
/*storing old values*/
copyIm(U, U_old, dimX, dimY, dimZ);
@@ -286,7 +299,7 @@ bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsi
/* calculate norm to terminate earlier */
re = 0.0f; re1 = 0.0f;
- for (j = 0; j<dimX*dimY*dimZ; j++)
+ for (j = 0; j < dimX*dimY*dimZ; j++)
{
re += pow(U_old[j] - U[j], 2);
re1 += pow(U_old[j], 2);
@@ -303,11 +316,13 @@ bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsi
/*printf("%f %i %i \n", re, ll, count); */
/*copyIm(U_old, U, dimX, dimY, dimZ); */
- result.append<np::ndarray>(npU);
- result.append<int>(ll);
+
}
//printf("SB iterations stopped at iteration: %i\n", ll);
- if (number_of_dims == 3) {
+ result.append<np::ndarray>(npU);
+ result.append<int>(ll);
+ }
+ if (number_of_dims == 3) {
/*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
@@ -375,24 +390,25 @@ bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsi
result.append<np::ndarray>(npU);
result.append<int>(ll);
}
- }
return result;
-}
+ }
+
+
bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) {
// the result is in the following list
bp::list result;
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
+ int number_of_dims, dimX, dimY, dimZ, ll, j, count;
float *A, *D = NULL, *D_old = NULL, *P1 = NULL, *P2 = NULL, *P3 = NULL, *P1_old = NULL, *P2_old = NULL, *P3_old = NULL, *R1 = NULL, *R2 = NULL, *R3 = NULL;
- float lambda, tk, tkp1, re, re1, re_old, epsil, funcval;
+ float lambda, tk, tkp1, re, re1, re_old, epsil, funcval, mu;
//number_of_dims = mxGetNumberOfDimensions(prhs[0]);
//dim_array = mxGetDimensions(prhs[0]);
- int number_of_dims = input.get_nd();
+ number_of_dims = input.get_nd();
int dim_array[3];
dim_array[0] = input.shape(0);
@@ -512,7 +528,7 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me
for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
//funcvalA[0] = sqrt(funcval);
float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv), sizeof(float));
+ std::memcpy(funcvalA, &fv, sizeof(float));
break;
}
@@ -524,7 +540,7 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me
for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
//funcvalA[0] = sqrt(funcval);
float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv), sizeof(float));
+ std::memcpy(funcvalA, &fv, sizeof(float));
break;
}
}
@@ -544,7 +560,7 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me
for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
//funcvalA[0] = sqrt(funcval);
float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv), sizeof(float));
+ std::memcpy(funcvalA, &fv, sizeof(float));
}
}
//printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
@@ -622,7 +638,7 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me
for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
//funcvalA[0] = sqrt(funcval);
float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv), sizeof(float));
+ std::memcpy(funcvalA, &fv, sizeof(float));
break;
}
@@ -634,7 +650,7 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me
for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
//funcvalA[0] = sqrt(funcval);
float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv), sizeof(float));
+ std::memcpy(funcvalA, &fv, sizeof(float));
break;
}
}
@@ -655,7 +671,7 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me
for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
//funcvalA[0] = sqrt(funcval);
float fv = sqrt(funcval);
- std::memcpy(funcvalA, &fv), sizeof(float));
+ std::memcpy(funcvalA, &fv, sizeof(float));
}
}
@@ -668,13 +684,194 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me
return result;
}
-BOOST_PYTHON_MODULE(fista)
+bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) {
+ // the result is in the following list
+ bp::list result;
+
+ int number_of_dims, dimX, dimY, dimZ, ll, j, count;
+ //const int *dim_array;
+ float *U0, *U = NULL, *U_old = NULL, *D1 = NULL, *D2 = NULL, *D3 = NULL, lambda, tau, re, re1, epsil, re_old;
+ unsigned short *Map = NULL;
+
+ number_of_dims = input.get_nd();
+ int dim_array[3];
+
+ dim_array[0] = input.shape(0);
+ dim_array[1] = input.shape(1);
+ if (number_of_dims == 2) {
+ dim_array[2] = -1;
+ }
+ else {
+ dim_array[2] = input.shape(2);
+ }
+
+ ///*Handling Matlab input data*/
+ //U0 = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/
+ //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); }
+ //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/
+ //tau = (float)mxGetScalar(prhs[2]); /* time-step */
+ //iter = (int)mxGetScalar(prhs[3]); /*iterations number*/
+ //epsil = (float)mxGetScalar(prhs[4]); /* tolerance constant */
+ //switcher = (int)mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/
+
+ U0 = reinterpret_cast<float *>(input.get_data());
+ lambda = (float)d_lambda;
+ tau = (float)d_tau;
+ // iter is passed as parameter
+ epsil = (float)d_epsil;
+ // switcher is passed as parameter
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1;
+
+ if (number_of_dims == 2) {
+ /*2D case*/
+ /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/
+
+ bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+
+
+ np::ndarray npU = np::zeros(shape, dtype);
+ np::ndarray npU_old = np::zeros(shape, dtype);
+ np::ndarray npD1 = np::zeros(shape, dtype);
+ np::ndarray npD2 = np::zeros(shape, dtype);
+
+
+ U = reinterpret_cast<float *>(npU.get_data());
+ U_old = reinterpret_cast<float *>(npU_old.get_data());
+ D1 = reinterpret_cast<float *>(npD1.get_data());
+ D2 = reinterpret_cast<float *>(npD2.get_data());
+
+ /*Copy U0 to U*/
+ copyIm(U0, U, dimX, dimY, dimZ);
+
+ count = 1;
+ re_old = 0.0f;
+
+ for (ll = 0; ll < iter; ll++) {
+
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*estimate inner derrivatives */
+ der2D(U, D1, D2, dimX, dimY, dimZ);
+ /* calculate div^2 and update */
+ div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau);
+
+ /* calculate norm to terminate earlier */
+ re = 0.0f; re1 = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(U_old[j] - U[j], 2);
+ re1 += pow(U_old[j], 2);
+ }
+ re = sqrt(re) / sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 4) break;
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) break;
+ }
+ re_old = re;
+
+ } /*end of iterations*/
+ //printf("HO iterations stopped at iteration: %i\n", ll);
+
+ result.append<np::ndarray>(npU);
+ }
+ else if (number_of_dims == 3) {
+ /*3D case*/
+ dimZ = dim_array[2];
+ /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ if (switcher != 0) {
+ Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
+ }*/
+ bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+
+
+ np::ndarray npU = np::zeros(shape, dtype);
+ np::ndarray npU_old = np::zeros(shape, dtype);
+ np::ndarray npD1 = np::zeros(shape, dtype);
+ np::ndarray npD2 = np::zeros(shape, dtype);
+ np::ndarray npD3 = np::zeros(shape, dtype);
+ np::ndarray npMap = np::zeros(shape, np::dtype::get_builtin<unsigned short>());
+ Map = reinterpret_cast<unsigned short *>(npMap.get_data());
+ if (switcher != 0) {
+ //Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
+
+ Map = reinterpret_cast<unsigned short *>(npMap.get_data());
+ }
+
+ U = reinterpret_cast<float *>(npU.get_data());
+ U_old = reinterpret_cast<float *>(npU_old.get_data());
+ D1 = reinterpret_cast<float *>(npD1.get_data());
+ D2 = reinterpret_cast<float *>(npD2.get_data());
+ D3 = reinterpret_cast<float *>(npD2.get_data());
+
+ /*Copy U0 to U*/
+ copyIm(U0, U, dimX, dimY, dimZ);
+
+ count = 1;
+ re_old = 0.0f;
+
+
+ if (switcher == 1) {
+ /* apply restrictive smoothing */
+ calcMap(U, Map, dimX, dimY, dimZ);
+ /*clear outliers */
+ cleanMap(Map, dimX, dimY, dimZ);
+ }
+ for (ll = 0; ll < iter; ll++) {
+
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*estimate inner derrivatives */
+ der3D(U, D1, D2, D3, dimX, dimY, dimZ);
+ /* calculate div^2 and update */
+ div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau);
+
+ /* calculate norm to terminate earlier */
+ re = 0.0f; re1 = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(U_old[j] - U[j], 2);
+ re1 += pow(U_old[j], 2);
+ }
+ re = sqrt(re) / sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 4) break;
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) break;
+ }
+ re_old = re;
+
+ } /*end of iterations*/
+ //printf("HO iterations stopped at iteration: %i\n", ll);
+ result.append<np::ndarray>(npU);
+ if (switcher != 0) result.append<np::ndarray>(npMap);
+
+ }
+ return result;
+}
+
+
+BOOST_PYTHON_MODULE(regularizers)
{
np::initialize();
//To specify that this module is a package
bp::object package = bp::scope();
- package.attr("__path__") = "fista";
+ package.attr("__path__") = "regularizers";
np::dtype dt1 = np::dtype::get_builtin<uint8_t>();
np::dtype dt2 = np::dtype::get_builtin<uint16_t>();
@@ -682,4 +879,5 @@ BOOST_PYTHON_MODULE(fista)
def("mexFunction", mexFunction);
def("SplitBregman_TV", SplitBregman_TV);
def("FGP_TV", FGP_TV);
+ def("LLT_model", LLT_model);
} \ No newline at end of file