diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/Core/CMakeLists.txt | 8 | ||||
-rw-r--r-- | src/Core/regularisers_CPU/MASK_merge_core.c | 262 | ||||
-rw-r--r-- | src/Core/regularisers_CPU/MASK_merge_core.h | 56 | ||||
-rw-r--r-- | src/Python/ccpi/filters/regularisers.py | 45 | ||||
-rw-r--r-- | src/Python/src/cpu_regularisers.pyx | 76 |
5 files changed, 368 insertions, 79 deletions
diff --git a/src/Core/CMakeLists.txt b/src/Core/CMakeLists.txt index 6975a89..8aec749 100644 --- a/src/Core/CMakeLists.txt +++ b/src/Core/CMakeLists.txt @@ -68,12 +68,12 @@ add_library(cilreg SHARED ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/SB_TV_core.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/TGV_core.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/Diffusion_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/DiffusionMASK_core.c + ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/MASK_merge_core.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/Diffus4th_order_core.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/LLT_ROF_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/ROF_TV_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/FGP_dTV_core.c - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/TNV_core.c + ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/ROF_TV_core.c + ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/FGP_dTV_core.c + ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/TNV_core.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/Nonlocal_TV_core.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/PatchSelect_core.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/utils.c diff --git a/src/Core/regularisers_CPU/MASK_merge_core.c b/src/Core/regularisers_CPU/MASK_merge_core.c new file mode 100644 index 0000000..d77c812 --- /dev/null +++ b/src/Core/regularisers_CPU/MASK_merge_core.c @@ -0,0 +1,262 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2019 Daniil Kazantsev + * Copyright 2019 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "MASK_merge_core.h" +#include "utils.h" + +/* A method to ensure connectivity within regions of the segmented image/volume. Here we assume + * that the MASK has been obtained using some classification/segmentation method such as k-means or gaussian + * mixture. Some pixels/voxels have been misclassified and we check the spatial dependences + * and correct the mask. We check the connectivity using the bresenham line algorithm within the non-local window + * surrounding the pixel of interest. + * + * Input Parameters: + * 1. MASK [0:255], the result of some classification algorithm (information-based preferably) + * 2. The list of classes (e.g. [3,4]) to apply the method. The given order matters. + * 3. The total number of classes in the MASK. + * 4. The size of the Correction Window inside which the method works. + + * Output: + * 1. MASK_upd - the UPDATED MASK where some regions have been corrected (merged) or removed + * 2. CORRECTEDRegions - The array of the same size as MASK where all regions which were + * changed are highlighted and the changes have been counted + */ + +float Mask_merge_main(unsigned char *MASK, unsigned char *MASK_upd, unsigned char *CORRECTEDRegions, unsigned char *SelClassesList, int SelClassesList_length, int classesNumb, int CorrectionWindow, int dimX, int dimY, int dimZ) +{ + long i,j,l; + int counterG, switcher; + long DimTotal; + unsigned char *MASK_temp, *ClassesList, CurrClass, temp; + DimTotal = (long)(dimX*dimY*dimZ); + + /* defines the list for all classes in the mask */ + ClassesList = (unsigned char*) calloc (classesNumb,sizeof(unsigned char)); + + /* find which classes (values) are present in the segmented data */ + CurrClass = MASK[0]; ClassesList[0]= MASK[0]; counterG = 1; + for(i=0; i<DimTotal; i++) { + if (MASK[i] != CurrClass) { + switcher = 1; + for(j=0; j<counterG; j++) { + if (ClassesList[j] == MASK[i]) { + switcher = 0; + break; + }} + if (switcher == 1) { + CurrClass = MASK[i]; + ClassesList[counterG] = MASK[i]; + /*printf("[%u]\n", ClassesList[counterG]);*/ + counterG++; + } + } + if (counterG == classesNumb) break; + } + /* sort from LOW->HIGH the obtained values (classes) */ + for(i=0; i<classesNumb; i++) { + for(j=0; j<classesNumb-1; j++) { + if(ClassesList[j] > ClassesList[j+1]) { + temp = ClassesList[j+1]; + ClassesList[j+1] = ClassesList[j]; + ClassesList[j] = temp; + }}} + + MASK_temp = (unsigned char*) calloc (DimTotal,sizeof(unsigned char)); + + /* copy given MASK to MASK_upd*/ + copyIm_unchar(MASK, MASK_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); + + if (dimZ == 1) { + /********************** PERFORM 2D MASK PROCESSING ************************/ + #pragma omp parallel for shared(MASK,MASK_upd) private(i,j) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* STEP1: in a smaller neighbourhood check that the current pixel is NOT an outlier */ + OutiersRemoval2D(MASK, MASK_upd, i, j, (long)(dimX), (long)(dimY)); + }} + /* copy the updated MASK (clean of outliers) */ + copyIm_unchar(MASK_upd, MASK_temp, (long)(dimX), (long)(dimY), (long)(dimZ)); + + for(l=0; l<SelClassesList_length; l++) { + /*printf("[%u]\n", ClassesList[SelClassesList[l]]);*/ + #pragma omp parallel for shared(MASK_temp,MASK_upd,l) private(i,j) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* The class of the central pixel has not changed, i.e. the central pixel is not an outlier -> continue */ + if (MASK_temp[j*dimX+i] == MASK[j*dimX+i]) { + /* !One needs to work with a specific class to avoid overlaps! It is + crucial to establish relevant classes first (given as an input in SelClassesList) */ + if (MASK_temp[j*dimX+i] == ClassesList[SelClassesList[l]]) { + /* i = 258; j = 165; */ + Mask_update2D(MASK_temp, MASK_upd, CORRECTEDRegions, i, j, CorrectionWindow, (long)(dimX), (long)(dimY)); + }} + }} + /* copy the updated mask */ + copyIm_unchar(MASK_upd, MASK_temp, (long)(dimX), (long)(dimY), (long)(dimZ)); + } + } + else { + /********************** PERFORM 3D MASK PROCESSING ************************/ + + + } + + free(MASK_temp); + return 0; +} + + +/********************************************************************/ +/***************************2D Functions*****************************/ +/********************************************************************/ +float OutiersRemoval2D(unsigned char *MASK, unsigned char *MASK_upd, long i, long j, long dimX, long dimY) +{ + /*if the ROI pixel does not belong to the surrondings, turn it into the surronding*/ + long i_m, j_m, i1, j1, counter; + counter = 0; + for(i_m=-1; i_m<=1; i_m++) { + for(j_m=-1; j_m<=1; j_m++) { + i1 = i+i_m; + j1 = j+j_m; + if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { + if (MASK[j*dimX+i] != MASK[j1*dimX+i1]) counter++; + } + }} + if (counter >= 8) MASK_upd[j*dimX+i] = MASK[j1*dimX+i1]; + return *MASK_upd; +} + +float Mask_update2D(unsigned char *MASK_temp, unsigned char *MASK_upd, unsigned char *CORRECTEDRegions, long i, long j, int CorrectionWindow, long dimX, long dimY) +{ + long i_m, j_m, i1, j1, CounterOtherClass; + + /* STEP2: in a larger neighbourhood check that the other class is present */ + CounterOtherClass = 0; + for(i_m=-CorrectionWindow; i_m<=CorrectionWindow; i_m++) { + for(j_m=-CorrectionWindow; j_m<=CorrectionWindow; j_m++) { + i1 = i+i_m; + j1 = j+j_m; + if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { + if (MASK_temp[j*dimX+i] != MASK_temp[j1*dimX+i1]) CounterOtherClass++; + } + }} + if (CounterOtherClass > 0) { + /* the other class is present in the vicinity of CorrectionWindow, continue to STEP 3 */ + /* + STEP 3: Loop through all neighbours in CorrectionWindow and check the spatial connection. + Meaning that we're instrested if there are any classes between points A and B that + does not belong to A and B (A,B \in C) + */ + for(i_m=-CorrectionWindow; i_m<=CorrectionWindow; i_m++) { + for(j_m=-CorrectionWindow; j_m<=CorrectionWindow; j_m++) { + i1 = i+i_m; + j1 = j+j_m; + if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { + if (MASK_temp[j*dimX+i] == MASK_temp[j1*dimX+i1]) { + /* A and B points belong to the same class, do STEP 4*/ + /* STEP 4: Run Bresenham line algorithm between A and B points + and convert all points on the way to the class of A/B. */ + bresenham2D(i, j, i1, j1, MASK_temp, MASK_upd, CORRECTEDRegions, (long)(dimX), (long)(dimY)); + } + } + }} + } + return 0; +} +int bresenham2D(int i, int j, int i1, int j1, unsigned char *MASK, unsigned char *MASK_upd, unsigned char *CORRECTEDRegions, long dimX, long dimY) +{ + int n; + int x[] = {i, i1}; + int y[] = {j, j1}; + int steep = (fabs(y[1]-y[0]) > fabs(x[1]-x[0])); + int ystep = 0; + + //printf("[%i][%i][%i][%i]\n", x[1], y[1], steep, kk) ; + //if (steep == 1) {swap(x[0],y[0]); swap(x[1],y[1]);} + + if (steep == 1) { + // swaping + int a, b; + + a = x[0]; + b = y[0]; + x[0] = b; + y[0] = a; + + a = x[1]; + b = y[1]; + x[1] = b; + y[1] = a; + } + + if (x[0] > x[1]) { + int a, b; + a = x[0]; + b = x[1]; + x[0] = b; + x[1] = a; + + a = y[0]; + b = y[1]; + y[0] = b; + y[1] = a; + } //(x[0] > x[1]) + + int delx = x[1]-x[0]; + int dely = fabs(y[1]-y[0]); + int error = 0; + int x_n = x[0]; + int y_n = y[0]; + if (y[0] < y[1]) {ystep = 1;} + else {ystep = -1;} + + for(n = 0; n<delx+1; n++) { + if (steep == 1) { + /*printf("[%i][%i][%u]\n", x_n, y_n, MASK[y_n*dimX+x_n]);*/ + // MASK_upd[x_n*dimX+y_n] = 10; + if (MASK[j*dimX+i] != MASK[x_n*dimX+y_n]) { + MASK_upd[x_n*dimX+y_n] = MASK[j*dimX+i]; + CORRECTEDRegions[x_n*dimX+y_n] += 1; + } + } + else { + // printf("[%i][%i][%u]\n", y_n, x_n, MASK[x_n*dimX+y_n]); + // MASK_upd[y_n*dimX+x_n] = 20; + if (MASK[j*dimX+i] != MASK[y_n*dimX+x_n]) { + MASK_upd[y_n*dimX+x_n] = MASK[j*dimX+i]; + CORRECTEDRegions[y_n*dimX+x_n] += 1; + } + } + x_n = x_n + 1; + error = error + dely; + + if (2*error >= delx) { + y_n = y_n + ystep; + error = error - delx; + } // (2*error >= delx) + //printf("[%i][%i][%i]\n", X_new[n], Y_new[n], n) ; + } // for(int n = 0; n<delx+1; n++) + return 0; +} +/********************************************************************/ +/***************************3D Functions*****************************/ +/********************************************************************/ + + + diff --git a/src/Core/regularisers_CPU/MASK_merge_core.h b/src/Core/regularisers_CPU/MASK_merge_core.h new file mode 100644 index 0000000..287f875 --- /dev/null +++ b/src/Core/regularisers_CPU/MASK_merge_core.h @@ -0,0 +1,56 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2019 Daniil Kazantsev +Copyright 2019 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" +#include "utils.h" +#include "CCPiDefines.h" + +/* A method to ensure connectivity within regions of the segmented image/volume. Here we assume + * that the MASK has been obtained using some classification/segmentation method such as k-means or gaussian + * mixture. Some pixels/voxels have been misclassified and we check the spatial dependences + * and correct the mask. We check the connectivity using the bresenham line algorithm within the non-local window + * surrounding the pixel of interest. + * + * Input Parameters: + * 1. MASK [0:255], the result of some classification algorithm (information-based preferably) + * 2. The list of classes (e.g. [3,4]) to apply the method. The given order matters. + * 3. The total number of classes in the MASK. + * 4. The size of the Correction Window inside which the method works. + + * Output: + * 1. MASK_upd - the UPDATED MASK where some regions have been corrected (merged) or removed + * 2. CORRECTEDRegions - The array of the same size as MASK where all regions which were + * changed are highlighted and the changes have been counted + */ + + +#ifdef __cplusplus +extern "C" { +#endif +CCPI_EXPORT float Mask_merge_main(unsigned char *MASK, unsigned char *MASK_upd, unsigned char *CORRECTEDRegions, unsigned char *SelClassesList, int SelClassesList_length, int classesNumb, int CorrectionWindow, int dimX, int dimY, int dimZ); +CCPI_EXPORT float OutiersRemoval2D(unsigned char *MASK, unsigned char *MASK_upd, long i, long j, long dimX, long dimY); +CCPI_EXPORT float Mask_update2D(unsigned char *MASK_temp, unsigned char *MASK_upd, unsigned char *CORRECTEDRegions, long i, long j, int CorrectionWindow, long dimX, long dimY); +CCPI_EXPORT int bresenham2D(int i, int j, int i1, int j1, unsigned char *MASK, unsigned char *MASK_upd, unsigned char *CORRECTEDRegions, long dimX, long dimY); +#ifdef __cplusplus +} +#endif diff --git a/src/Python/ccpi/filters/regularisers.py b/src/Python/ccpi/filters/regularisers.py index 610907d..2fee8b3 100644 --- a/src/Python/ccpi/filters/regularisers.py +++ b/src/Python/ccpi/filters/regularisers.py @@ -2,7 +2,7 @@ script which assigns a proper device core function based on a flag ('cpu' or 'gpu') """ -from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, NDF_MASK_CPU, Diff4th_CPU, TGV_CPU, LLT_ROF_CPU, PATCHSEL_CPU, NLTV_CPU +from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU, TGV_CPU, LLT_ROF_CPU, PATCHSEL_CPU, NLTV_CPU, MASK_CORR_CPU try: from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU, TGV_GPU, LLT_ROF_GPU, PATCHSEL_GPU gpu_enabled = True @@ -127,37 +127,6 @@ def NDF(inputData, regularisation_parameter, edge_parameter, iterations, raise ValueError ('GPU is not available') raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ .format(device)) -def NDF_MASK(inputData, maskdata, select_classes, total_classesNum, diffuswindow, regularisation_parameter, edge_parameter, iterations, - time_marching_parameter, penalty_type, tolerance_param, device='cpu'): - if device == 'cpu': - return NDF_MASK_CPU(inputData, - maskdata, - select_classes, - total_classesNum, - diffuswindow, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter, - penalty_type, - tolerance_param) - elif device == 'gpu' and gpu_enabled: - return NDF_MASK_CPU(inputData, - maskdata, - select_classes, - total_classesNum, - diffuswindow, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter, - penalty_type, - tolerance_param) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) def Diff4th(inputData, regularisation_parameter, edge_parameter, iterations, time_marching_parameter, tolerance_param, device='cpu'): if device == 'cpu': @@ -243,3 +212,15 @@ def NDF_INP(inputData, maskData, regularisation_parameter, edge_parameter, itera def NVM_INP(inputData, maskData, SW_increment, iterations): return NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterations) + +def MASK_CORR(maskdata, select_classes, total_classesNum, CorrectionWindow, device='cpu'): + if device == 'cpu': + return MASK_CORR_CPU(maskdata, select_classes, total_classesNum, CorrectionWindow) + elif device == 'gpu' and gpu_enabled: + return MASK_CORR_CPU(maskdata, select_classes, total_classesNum, CorrectionWindow) + else: + if not gpu_enabled and device == 'gpu': + raise ValueError ('GPU is not available') + raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ + .format(device)) + diff --git a/src/Python/src/cpu_regularisers.pyx b/src/Python/src/cpu_regularisers.pyx index 78c46e2..a63ecfa 100644 --- a/src/Python/src/cpu_regularisers.pyx +++ b/src/Python/src/cpu_regularisers.pyx @@ -24,7 +24,7 @@ cdef extern float SB_TV_CPU_main(float *Input, float *Output, float *infovector, cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float *infovector, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ); cdef extern float TGV_main(float *Input, float *Output, float *infovector, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, float epsil, int dimX, int dimY, int dimZ); cdef extern float Diffusion_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ); -cdef extern float DiffusionMASK_CPU_main(float *Input, unsigned char *MASK, unsigned char *MASK_upd, unsigned char *SelClassesList, int SelClassesList_length, float *Output, float *infovector, int classesNumb, int DiffusWindow, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ); +cdef extern float Mask_merge_main(unsigned char *MASK, unsigned char *MASK_upd, unsigned char *CORRECTEDRegions, unsigned char *SelClassesList, int SelClassesList_length, int classesNumb, int CorrectionWindow, int dimX, int dimY, int dimZ); cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ); cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float *infovector, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int dimX, int dimY, int dimZ); cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ); @@ -382,48 +382,6 @@ def NDF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, return (outputData,infovec) #****************************************************************# -#********Constrained Nonlinear(Isotropic) Diffusion**************# -#****************************************************************# -def NDF_MASK_CPU(inputData, maskData, select_classes, total_classesNum, diffuswindow, regularisation_parameter, edge_parameter, iterationsNumb,time_marching_parameter, penalty_type, tolerance_param): - if inputData.ndim == 2: - return NDF_MASK_2D(inputData, maskData, select_classes, total_classesNum, diffuswindow, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, tolerance_param) - elif inputData.ndim == 3: - return 0 - -def NDF_MASK_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData, - np.ndarray[np.uint8_t, ndim=1, mode="c"] select_classes, - int total_classesNum, - int diffuswindow, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter, - int penalty_type, - float tolerance_param): - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - select_classes_length = select_classes.shape[0] - - cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] mask_upd = \ - np.zeros([dims[0],dims[1]], dtype='uint8') - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ - np.zeros([2], dtype='float32') - - - # Run constrained nonlinear diffusion iterations for 2D data - DiffusionMASK_CPU_main(&inputData[0,0], &maskData[0,0], &mask_upd[0,0], &select_classes[0], select_classes_length, &outputData[0,0], &infovec[0], - total_classesNum, diffuswindow, regularisation_parameter, edge_parameter, iterationsNumb, - time_marching_parameter, penalty_type, - tolerance_param, - dims[1], dims[0], 1) - return (mask_upd,outputData,infovec) - -#****************************************************************# #*************Anisotropic Fourth-Order diffusion*****************# #****************************************************************# def Diff4th_CPU(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter,tolerance_param): @@ -736,6 +694,38 @@ def NVM_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, return (outputData, maskData_upd) +############################################################################## +#****************************************************************# +#********Mask (segmented image) correction module **************# +#****************************************************************# +def MASK_CORR_CPU(maskData, select_classes, total_classesNum, CorrectionWindow): + if maskData.ndim == 2: + return MASK_CORR_CPU_2D(maskData, select_classes, total_classesNum, CorrectionWindow) + elif maskData.ndim == 3: + return 0 + +def MASK_CORR_CPU_2D(np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData, + np.ndarray[np.uint8_t, ndim=1, mode="c"] select_classes, + int total_classesNum, + int CorrectionWindow): + + cdef long dims[2] + dims[0] = maskData.shape[0] + dims[1] = maskData.shape[1] + + select_classes_length = select_classes.shape[0] + + cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] mask_upd = \ + np.zeros([dims[0],dims[1]], dtype='uint8') + cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] corr_regions = \ + np.zeros([dims[0],dims[1]], dtype='uint8') + + # Run the function to process given MASK + Mask_merge_main(&maskData[0,0], &mask_upd[0,0], &corr_regions[0,0], &select_classes[0], select_classes_length, + total_classesNum, CorrectionWindow, dims[1], dims[0], 1) + return (mask_upd,corr_regions) + +############################################################################## #****************************************************************# #***************Calculation of TV-energy functional**************# |