diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/Core/regularisers_CPU/Diffusion_core.c | 70 | ||||
-rw-r--r-- | src/Core/regularisers_GPU/NonlDiff_GPU_core.cu | 57 |
2 files changed, 115 insertions, 12 deletions
diff --git a/src/Core/regularisers_CPU/Diffusion_core.c b/src/Core/regularisers_CPU/Diffusion_core.c index 1a05c39..fdd60de 100644 --- a/src/Core/regularisers_CPU/Diffusion_core.c +++ b/src/Core/regularisers_CPU/Diffusion_core.c @@ -179,10 +179,10 @@ float NonLinearDiff2D(float *Input, float *Output, float lambdaPar, float sigmaP } else if (penaltytype == 2) { /* Perona-Malik */ - e1 = (e1)/(1.0f + powf((e1/sigmaPar),2)); - w1 = (w1)/(1.0f + powf((w1/sigmaPar),2)); - n1 = (n1)/(1.0f + powf((n1/sigmaPar),2)); - s1 = (s1)/(1.0f + powf((s1/sigmaPar),2)); + e1 /= (1.0f + powf((e1/sigmaPar),2)); + w1 /= (1.0f + powf((w1/sigmaPar),2)); + n1 /= (1.0f + powf((n1/sigmaPar),2)); + s1 /= (1.0f + powf((s1/sigmaPar),2)); } else if (penaltytype == 3) { /* Tukey Biweight */ @@ -205,8 +205,32 @@ float NonLinearDiff2D(float *Input, float *Output, float lambdaPar, float sigmaP if (fabs(n1) > sigmaPar) n1 = 0.0f; if (fabs(s1) > sigmaPar) s1 = 0.0f; } + else if (penaltytype == 5) { + /* + Threshold constrained Huber diffusion + */ + if (fabs(e1) <= 2.0f*sigmaPar) { + if (fabs(e1) > sigmaPar) e1 = signNDFc(e1); + else e1 = e1/sigmaPar; } + else e1 = 0.0f; + + if (fabs(w1) <= 2.0f*sigmaPar) { + if (fabs(w1) > sigmaPar) w1 = signNDFc(w1); + else w1 = w1/sigmaPar; } + else w1 = 0.0f; + + if (fabs(n1) <= 2.0f*sigmaPar) { + if (fabs(n1) > sigmaPar) n1 = signNDFc(n1); + else n1 = n1/sigmaPar; } + else n1 = 0.0f; + + if (fabs(s1) <= 2.0f*sigmaPar) { + if (fabs(s1) > sigmaPar) s1 = signNDFc(s1); + else s1 = s1/sigmaPar; } + else s1 = 0.0f; + } else { - printf("%s \n", "No penalty function selected! Use 1,2,3 or 4."); + printf("%s \n", "No penalty function selected! Use 1,2,3,4 or 5."); break; } Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index])); @@ -344,8 +368,42 @@ float NonLinearDiff3D(float *Input, float *Output, float lambdaPar, float sigmaP if (fabs(u1) > sigmaPar) u1 = 0.0f; if (fabs(d1) > sigmaPar) d1 = 0.0f; } + else if (penaltytype == 5) { + /* + Threshold constrained Huber diffusion + */ + if (fabs(e1) <= 2.0f*sigmaPar) { + if (fabs(e1) > sigmaPar) e1 = signNDFc(e1); + else e1 = e1/sigmaPar; } + else e1 = 0.0f; + + if (fabs(w1) <= 2.0f*sigmaPar) { + if (fabs(w1) > sigmaPar) w1 = signNDFc(w1); + else w1 = w1/sigmaPar; } + else w1 = 0.0f; + + if (fabs(n1) <= 2.0f*sigmaPar) { + if (fabs(n1) > sigmaPar) n1 = signNDFc(n1); + else n1 = n1/sigmaPar; } + else n1 = 0.0f; + + if (fabs(s1) <= 2.0f*sigmaPar) { + if (fabs(s1) > sigmaPar) s1 = signNDFc(s1); + else s1 = s1/sigmaPar; } + else s1 = 0.0f; + + if (fabs(u1) <= 2.0f*sigmaPar) { + if (fabs(u1) > sigmaPar) u1 = signNDFc(u1); + else u1 = u1/sigmaPar; } + else u1 = 0.0f; + + if (fabs(d1) <= 2.0f*sigmaPar) { + if (fabs(d1) > sigmaPar) d1 = signNDFc(d1); + else d1 = d1/sigmaPar; } + else d1 = 0.0f; + } else { - printf("%s \n", "No penalty function selected! Use 1,2,3 or 4."); + printf("%s \n", "No penalty function selected! Use 1,2,3,4 or 5."); break; } diff --git a/src/Core/regularisers_GPU/NonlDiff_GPU_core.cu b/src/Core/regularisers_GPU/NonlDiff_GPU_core.cu index a8876cd..0d34cf8 100644 --- a/src/Core/regularisers_GPU/NonlDiff_GPU_core.cu +++ b/src/Core/regularisers_GPU/NonlDiff_GPU_core.cu @@ -160,27 +160,37 @@ __global__ void LinearDiff2D_kernel(float *Input, float *Output, float lambdaPar This means that the linear diffusion will be performed on pixels with absolute difference less than the threshold. */ - if (abs(e1) <= 1.5f*sigmaPar) { + if (abs(e1) > sigmaPar) e1 = 0.0f; + if (abs(w1) > sigmaPar) w1 = 0.0f; + if (abs(n1) > sigmaPar) n1 = 0.0f; + if (abs(s1) > sigmaPar) s1 = 0.0f; + } + else if (penaltytype == 5) { + /* Threshold-constrained Huber nonlinear diffusion + This means that the linear diffusion will be performed on pixels with + absolute difference less than the threshold. + */ + if (abs(e1) <= 2.0f*sigmaPar) { if (abs(e1) > sigmaPar) e1 = signNDF(e1); else e1 = e1/sigmaPar;} else e1 = 0.0f; - if (abs(w1) <= 1.5f*sigmaPar) { + if (abs(w1) <= 2.0f*sigmaPar) { if (abs(w1) > sigmaPar) w1 = signNDF(w1); else w1 = w1/sigmaPar;} else w1 = 0.0f; - if (abs(n1) <= 1.5f*sigmaPar) { + if (abs(n1) <= 2.0f*sigmaPar) { if (abs(n1) > sigmaPar) n1 = signNDF(n1); else n1 = n1/sigmaPar; } else n1 = 0.0f; - if (abs(s1) <= 1.5f*sigmaPar) { + if (abs(s1) <= 2.0f*sigmaPar) { if (abs(s1) > sigmaPar) s1 = signNDF(s1); else s1 = s1/sigmaPar; } else s1 = 0.0f; } - else printf("%s \n", "No penalty function selected! Use 1,2,3 or 4."); + else printf("%s \n", "No penalty function selected! Use 1,2,3, 4 or 5."); Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index])); } @@ -318,7 +328,42 @@ __global__ void NonLinearDiff3D_kernel(float *Input, float *Output, float lambda if (abs(u1) > sigmaPar) u1 = 0.0f; if (abs(d1) > sigmaPar) d1 = 0.0f; } - else printf("%s \n", "No penalty function selected! Use 1,2,3 or 4."); + else if (penaltytype == 5) { + /* Threshold-constrained Huber nonlinear diffusion + This means that the linear diffusion will be performed on pixels with + absolute difference less than the threshold. + */ + if (abs(e1) <= 2.0f*sigmaPar) { + if (abs(e1) > sigmaPar) e1 = signNDF(e1); + else e1 = e1/sigmaPar;} + else e1 = 0.0f; + + if (abs(w1) <= 2.0f*sigmaPar) { + if (abs(w1) > sigmaPar) w1 = signNDF(w1); + else w1 = w1/sigmaPar;} + else w1 = 0.0f; + + if (abs(n1) <= 2.0f*sigmaPar) { + if (abs(n1) > sigmaPar) n1 = signNDF(n1); + else n1 = n1/sigmaPar; } + else n1 = 0.0f; + + if (abs(s1) <= 2.0f*sigmaPar) { + if (abs(s1) > sigmaPar) s1 = signNDF(s1); + else s1 = s1/sigmaPar; } + else s1 = 0.0f; + + if (abs(u1) <= 2.0f*sigmaPar) { + if (abs(u1) > sigmaPar) u1 = signNDF(u1); + else u1 = u1/sigmaPar; } + else u1 = 0.0f; + + if (abs(d1) <= 2.0f*sigmaPar) { + if (abs(d1) > sigmaPar) d1 = signNDF(d1); + else d1 = d1/sigmaPar; } + else d1 = 0.0f; + } + else printf("%s \n", "No penalty function selected! Use 1,2,3,4, or 5."); Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index])); } } |