From 45ce9d604f2fe6f58318c8103f3f6125af9cb9bc Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Fri, 27 Oct 2017 12:39:59 +0100
Subject: initializes R3

Bugfix, R2 was initialized twice, R3 never.
---
 src/Python/fista_module.cpp | 5 +----
 1 file changed, 1 insertion(+), 4 deletions(-)

diff --git a/src/Python/fista_module.cpp b/src/Python/fista_module.cpp
index aca3be0..f3add76 100644
--- a/src/Python/fista_module.cpp
+++ b/src/Python/fista_module.cpp
@@ -328,7 +328,6 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me
 	else {
 		dim_array[2] = input.shape(2);
 	}
-
 	// Parameter handling is be done in Python
 	///*Handling Matlab input data*/
 	//if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
@@ -513,13 +512,11 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me
 		P3_old = reinterpret_cast<float *>(npP3_old.get_data());
 		R1     = reinterpret_cast<float *>(npR1.get_data());
 		R2     = reinterpret_cast<float *>(npR2.get_data());
-		R2     = reinterpret_cast<float *>(npR3.get_data());
+		R3     = reinterpret_cast<float *>(npR3.get_data());
 		/* begin iterations */
 		for (ll = 0; ll<iter; ll++) {
-
 			/* computing the gradient of the objective function */
 			Obj_func3D(A, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
-
 			/*Taking a step towards minus of the gradient*/
 			Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
 
-- 
cgit v1.2.3


From a9ee40156a7ad6ae4fcb9e07aea99914f6c7f7ff Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Fri, 27 Oct 2017 12:40:53 +0100
Subject: handles correctly the slicing

---
 src/Python/ccpi/imaging/Regularizer.py | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/src/Python/ccpi/imaging/Regularizer.py b/src/Python/ccpi/imaging/Regularizer.py
index fb9ae08..8ab6c6a 100644
--- a/src/Python/ccpi/imaging/Regularizer.py
+++ b/src/Python/ccpi/imaging/Regularizer.py
@@ -216,13 +216,13 @@ class Regularizer():
                 #assuming it's 3D
                 # run independent calls on each slice
                 out3d = input.copy()
-                for i in range(np.shape(input)[2]):
-                    out = self.algorithm(input, regularization_parameter,
+                for i in range(np.shape(input)[0]):
+                    out = self.algorithm(input[i], regularization_parameter,
                                  self.pars['first_order_term'] , 
                                  self.pars['second_order_term'] , 
                                  self.pars['number_of_iterations'])
                     # copy the result in the 3D image
-                    out3d.T[i] = out[0].copy()
+                    out3d[i] = out[0].copy()
                 # append the rest of the info that the algorithm returns
                 output = [out3d]
                 for i in range(1,len(out)):
-- 
cgit v1.2.3


From 6ed4ddcfd133085688b53ad17fd7f595b49cd60d Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Fri, 27 Oct 2017 12:43:24 +0100
Subject: Finds the conda executable

---
 src/Python/CMakeLists.txt                | 4 ++--
 src/Python/FindAnacondaEnvironment.cmake | 7 ++++++-
 2 files changed, 8 insertions(+), 3 deletions(-)

diff --git a/src/Python/CMakeLists.txt b/src/Python/CMakeLists.txt
index 1b73380..aecc2ee 100644
--- a/src/Python/CMakeLists.txt
+++ b/src/Python/CMakeLists.txt
@@ -158,13 +158,13 @@ add_custom_target(regularizers
 		)
 
 add_custom_target(install-fista
-		COMMAND conda
+		COMMAND ${CONDA_EXECUTABLE}
 		install --force --use-local ccpi-fista=${CIL_VERSION} -c ccpi -c conda-forge
 		WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
 		)
 
 add_custom_target(install-regularizers
-		COMMAND conda
+		COMMAND ${CONDA_EXECUTABLE}
 		install --force --use-local ccpi-regularizers=${CIL_VERSION} -c ccpi -c conda-forge
 		WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
 		)
diff --git a/src/Python/FindAnacondaEnvironment.cmake b/src/Python/FindAnacondaEnvironment.cmake
index fa4637a..6475128 100644
--- a/src/Python/FindAnacondaEnvironment.cmake
+++ b/src/Python/FindAnacondaEnvironment.cmake
@@ -97,7 +97,12 @@ function (findPythonForAnacondaEnvironment env)
 	set (PYTHON_VERSION_MINOR ${_PYTHON_VERSION_MINOR} PARENT_SCOPE)
 	set (PYTHON_VERSION_PATCH ${_PYTHON_VERSION_PATCH} PARENT_SCOPE)
 	message("My version found " ${PYTHON_VERSION_STRING})
-
+	## find conda executable
+	if (WIN32)
+	  set (CONDA_EXECUTABLE ${env}/Script/conda PARENT_SCOPE)
+	elseif(UNIX)
+	  set (CONDA_EXECUTABLE ${env}/bin/conda PARENT_SCOPE)
+	endif()
 endfunction()
 
 
-- 
cgit v1.2.3


From 691b0f2243a0059e532053544fb0e5246fd3ac25 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Fri, 27 Oct 2017 15:51:17 +0100
Subject: Added DeviceModel and AstraDevice

these classes are to abstract the calls to forward/backprojection so that
the FISTA implementation is independent of ASTRA and we may use CCPi code
from CGLS.
---
 src/Python/ccpi/reconstruction/AstraDevice.py | 67 +++++++++++++++++++++++++++
 src/Python/ccpi/reconstruction/DeviceModel.py | 57 +++++++++++++++++++++++
 2 files changed, 124 insertions(+)
 create mode 100644 src/Python/ccpi/reconstruction/AstraDevice.py
 create mode 100644 src/Python/ccpi/reconstruction/DeviceModel.py

diff --git a/src/Python/ccpi/reconstruction/AstraDevice.py b/src/Python/ccpi/reconstruction/AstraDevice.py
new file mode 100644
index 0000000..d854183
--- /dev/null
+++ b/src/Python/ccpi/reconstruction/AstraDevice.py
@@ -0,0 +1,67 @@
+import astra
+from DeviceModel import DeviceModel
+
+class AstraDevice(DeviceModel):
+    '''Concrete class for Astra Device'''
+
+    def __init__(self,
+                 device_type,
+                 data_aquisition_geometry,
+                 reconstructed_volume_geometry):
+        
+
+        self.proj_geom = astra.creators.create_proj_geom(
+            device_type,
+            self.acquisition_data_geometry['detectorSpacingX'],
+            self.acquisition_data_geometry['detectorSpacingX'],
+            self.acquisition_data_geometry['cameraX'],
+            self.acquisition_data_geometry['cameraY'],
+            self.acquisition_data_geometry['angles'],
+            angles_rad
+            )
+
+        self.vol_geom = astra.creators.create_vol_geom(
+            self.reconstructed_volume_geometry['X'],
+            self.reconstructed_volume_geometry['Y'],
+            self.reconstructed_volume_geometry['Z']
+            )
+
+    def doForwardProject(self, volume):
+        '''Forward projects the volume according to the device geometry
+
+Uses Astra-toolbox
+'''
+        sino_id, y = astra.creators.create_sino3d_gpu(
+            volume, self.proj_geom, self.vol_geom)
+        astra.matlab.data3d('delete', sino_id)
+        return y
+
+    def doBackwardProject(self, projections):
+        '''Backward projects the projections according to the device geometry
+
+Uses Astra-toolbox
+'''
+        idx, volume = \
+               astra.creators.create_backprojection3d_gpu(
+                   projections,
+                   self.proj_geom,
+                   self.vol_geom)
+        astra.matlab.data3d('delete', idx)
+        return volume
+
+    def createReducedDevice(self):
+        return AstraDevice(self.proj_geom['type'],
+                    {'detectorSpacingX' : self.proj_geom['DetectorSpacingX'] ,
+                     'detectorSpacingY' : self.proj_geom['DetectorSpacingY'] ,
+                     'cameraX' : self.proj_geom['DetectorColCount'] ,
+                     'cameraY' : 1 ,
+                     'angles' : self.proj_geom['ProjectionAngles'] } ,
+                    {
+                        'X' : self.vol_geom['GridColCount'],
+                        'Y' : self.vol_geom['GridRowCount']
+                        'Z' : 1} ) 
+
+if __name__=="main":
+    a = AstraDevice()
+
+
diff --git a/src/Python/ccpi/reconstruction/DeviceModel.py b/src/Python/ccpi/reconstruction/DeviceModel.py
new file mode 100644
index 0000000..1717321
--- /dev/null
+++ b/src/Python/ccpi/reconstruction/DeviceModel.py
@@ -0,0 +1,57 @@
+from abc import ABCMeta, abstractmethod
+from enum import Enum
+
+class DeviceModel(metaclass=ABCMeta):
+    '''Abstract class that defines the device for projection and backprojection
+
+This class defines the methods that must be implemented by concrete classes.
+
+    '''
+    
+    class DeviceType(Enum):
+        '''Type of device
+PARALLEL BEAM
+PARALLEL BEAM 3D
+CONE BEAM
+HELICAL'''
+        
+        PARALLEL = 'parallel'
+        PARALLEL3D = 'parallel3d'
+        CONE_BEAM = 'cone-beam'
+        HELICAL = 'helical'
+        
+    def __init__(self,
+                 device_type,
+                 data_aquisition_geometry,
+                 reconstructed_volume_geometry):
+        '''Initializes the class
+
+Mandatory parameters are:
+device_type from DeviceType Enum
+data_acquisition_geometry: tuple (camera_X, camera_Y)
+reconstructed_volume_geometry: tuple (dimX,dimY,dimZ)
+'''
+        self.device_geometry = device_type
+        self.acquisition_data_geometry = {
+            'cameraX':           data_aquisition_geometry[0],
+            'cameraY':           data_aquisition_geometry[1],
+            'detectorSpacingX' : data_aquisition_geometry[2],
+            'detectorSpacingY' : data_aquisition_geometry[3],
+            'angles' :           data_aquisition_geometry[4],}
+        self.reconstructed_volume_geometry = {
+            'X': reconstructed_volume_geometry[0] ,
+            'Y': reconstructed_volume_geometry[1] ,
+            'Z': reconstructed_volume_geometry[2] }
+
+    @abstractmethod
+    def doFowardProject(self, volume):
+        '''Forward projects the volume according to the device geometry'''
+        return NotImplemented
+
+    
+    @abstractmethod
+    def doBackwardProject(self, projections):
+        '''Backward projects the projections according to the device geometry'''
+        return NotImplemented
+    
+
-- 
cgit v1.2.3


From 2a2785c0c22af91fb4c15b2e5bc44cd4816e65b4 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Fri, 27 Oct 2017 15:53:01 +0100
Subject: uses AstraDevice

---
 .../ccpi/reconstruction/FISTAReconstructor.py      | 124 +++++++++++++++------
 1 file changed, 92 insertions(+), 32 deletions(-)

diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
index c903712..1e464a1 100644
--- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -27,6 +27,7 @@ import numpy
 from enum import Enum
 
 import astra
+from ccpi.reconstruction.AstraDevice import AstraDevice
 
    
     
@@ -87,6 +88,19 @@ class FISTAReconstructor():
         self.pars['SlicesZ'] = sliceZ
         self.pars['output_volume'] = None
 
+
+        
+        device = createAstraDevice(projector_geometry, output_geometry)
+        self.setParameter(device_model=device)
+        proj_geomT = projector_geometry.copy();
+        proj_geomT['DetectorRowCount'] = 1;
+        vol_geomT = output_geometry.copy();
+        vol_geomT['GridSliceCount'] = 1;
+        reduced_device = createAstraDevice(proj_geomT, vol_geomT)
+        self.setParameter(reduced_device_model=reduced_device)
+
+        self.use_device = True
+        
         print (self.pars)
         # handle optional input parameters (at instantiation)
         
@@ -113,7 +127,9 @@ class FISTAReconstructor():
               'output_volume',
               'os_subsets',
               'os_indices',
-              'os_bins')
+              'os_bins',
+              'device_model',
+              'reduced_device_model')
         self.acceptedInputKeywords = list(kw)
         
         # handle keyworded parameters
@@ -171,7 +187,20 @@ class FISTAReconstructor():
             self.pars['initialize'] = False
 
         
-            
+    def createAstraDevice(self, projector_geometry, output_geometry):
+        '''TODO remove'''
+        
+        device = AstraDevice(DeviceModel.PARALLEL3D,
+                    {'detectorSpacingX' : projector_geometry['DetectorSpacingX'] ,
+                     'detectorSpacingY' : projector_geometry['DetectorSpacingY'] ,
+                     'cameraX' : projector_geometry['DetectorColCount'] ,
+                     'cameraY' : projector_geometry['DetectorRowCount'] ,
+                     'angles' : projector_geometry['ProjectionAngles'] } ,
+                    {
+                        'X' : output_geometry['GridColCount'],
+                        'Y' : output_geometry['GridRowCount']
+                        'Z' : output_geometry['GridSliceCount']} )
+        return device
             
     def setParameter(self, **kwargs):
         '''set named parameter for the reconstructor engine
@@ -436,13 +465,17 @@ class FISTAReconstructor():
         X_t = X.copy()
         # convenience variable storage
         proj_geom , vol_geom, sino , \
-          SlicesZ  = self.getParameter([ 'projector_geometry' ,
+          SlicesZ , ring_lambda_R_L1 = self.getParameter([ 'projector_geometry' ,
                                                 'output_geometry',
                                                 'input_sinogram',
-                                                'SlicesZ' ])
+                                                'SlicesZ' ,
+                                                'ring_lambda_R_L1'])
                    
         t = 1
         
+        device = self.getParameter('device_model')
+        reduced_device = self.getParameter('reduced_device_model')
+        
         for i in range(self.getParameter('number_of_iterations')):
             X_old = X.copy()
             t_old = t
@@ -453,29 +486,42 @@ class FISTAReconstructor():
                 # if the geometry is parallel use slice-by-slice
                 # projection-backprojection routine
                 #sino_updt = zeros(size(sino),'single');
-                proj_geomT = proj_geom.copy()
-                proj_geomT['DetectorRowCount'] = 1
-                vol_geomT = vol_geom.copy()
-                vol_geomT['GridSliceCount'] = 1;
-                self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
-                for kkk in range(SlicesZ):
-                    sino_id, self.sino_updt[kkk] = \
-                             astra.creators.create_sino3d_gpu(
-                                 X_t[kkk:kkk+1], proj_geomT, vol_geomT)
-                    astra.matlab.data3d('delete', sino_id)
+                
+                if self.use_device:
+                    self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
+                    
+                    for kkk in range(SlicesZ):
+                        self.sino_updt[kkk] = \
+                            reduced_device.doForwardProject( X_t[kkk:kkk+1] )
+                else:
+                    proj_geomT = proj_geom.copy()
+                    proj_geomT['DetectorRowCount'] = 1
+                    vol_geomT = vol_geom.copy()
+                    vol_geomT['GridSliceCount'] = 1;
+                    self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
+                    for kkk in range(SlicesZ):
+                        sino_id, self.sino_updt[kkk] = \
+                                 astra.creators.create_sino3d_gpu(
+                                     X_t[kkk:kkk+1], proj_geomT, vol_geomT)
+                        astra.matlab.data3d('delete', sino_id)
             else:
                 # for divergent 3D geometry (watch the GPU memory overflow in
                 # ASTRA versions < 1.8)
                 #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
-                sino_id, self.sino_updt = astra.creators.create_sino3d_gpu(
-                    X_t, proj_geom, vol_geom)
+                if self.use_device:
+                    self.sino_updt = device.doForwardProject(X_t)
+                else:
+                    sino_id, self.sino_updt = astra.creators.create_sino3d_gpu(
+                        X_t, proj_geom, vol_geom)
+                    astra.matlab.data3d('delete', sino_id)
 
 
             ## RING REMOVAL
-            self.ringRemoval(i)
+            if ring_lambda_R_L1 != 0:
+                self.ringRemoval(i)
             ## Projection/Backprojection Routine
             self.projectionBackprojection(X, X_t)
-            astra.matlab.data3d('delete', sino_id)
+            
             ## REGULARIZATION
             X = self.regularize(X)
             ## Update Loop
@@ -523,6 +569,8 @@ class FISTAReconstructor():
                                                   'output_geometry',
                                                   'Lipschitz_constant'])
         
+        device, reduced_device = self.getParameter(['device_model',
+                                                    'reduced_device_model'])
         
         if self.getParameter('projector_geometry')['type'] == 'parallel' or \
            self.getParameter('projector_geometry')['type'] == 'fanflat' or \
@@ -530,27 +578,39 @@ class FISTAReconstructor():
             # if the geometry is parallel use slice-by-slice
             # projection-backprojection routine
             #sino_updt = zeros(size(sino),'single');
-            proj_geomT = proj_geom.copy()
-            proj_geomT['DetectorRowCount'] = 1
-            vol_geomT = vol_geom.copy()
-            vol_geomT['GridSliceCount'] = 1;
             x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
-            
-            for kkk in range(SlicesZ):
                 
-                x_id, x_temp[kkk] = \
-                         astra.creators.create_backprojection3d_gpu(
-                             residual[kkk:kkk+1],
-                             proj_geomT, vol_geomT)
-                astra.matlab.data3d('delete', x_id)
+            if use_device:
+                proj_geomT = proj_geom.copy()
+                proj_geomT['DetectorRowCount'] = 1
+                vol_geomT = vol_geom.copy()
+                vol_geomT['GridSliceCount'] = 1;
+                
+                for kkk in range(SlicesZ):
+                    
+                    x_id, x_temp[kkk] = \
+                             astra.creators.create_backprojection3d_gpu(
+                                 residual[kkk:kkk+1],
+                                 proj_geomT, vol_geomT)
+                    astra.matlab.data3d('delete', x_id)
+            else:
+                for kkk in range(SliceZ):
+                    x_temp[kkk] = \
+                        reduced_device.doBackwardProject(residual[kkk:kkk+1])
         else:
-            x_id, x_temp = \
+            if use_device:
+                x_id, x_temp = \
                   astra.creators.create_backprojection3d_gpu(
-                      residual, proj_geom, vol_geom)            
+                      residual, proj_geom, vol_geom)
+                astra.matlab.data3d('delete', x_id)
+            else:
+                x_temp = \
+                    device.doBackwardProject(residual)
+                       
 
         X = X_t - (1/L_const) * x_temp
         #astra.matlab.data3d('delete', sino_id)
-        astra.matlab.data3d('delete', x_id)
+        
 
     def regularize(self, X):
         print ("FISTA Reconstructor: regularize")
-- 
cgit v1.2.3


From 8177f5464d6236f1ae43cabd55f8da4b6dede2bb Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Fri, 27 Oct 2017 16:45:38 +0100
Subject: further development using abstract forward/backward projector

---
 src/Python/ccpi/reconstruction/AstraDevice.py      | 36 +++++++-----
 src/Python/ccpi/reconstruction/DeviceModel.py      |  7 ++-
 .../ccpi/reconstruction/FISTAReconstructor.py      | 33 +++--------
 src/Python/test/test_reconstructor.py              | 67 +++++++++++++++-------
 4 files changed, 84 insertions(+), 59 deletions(-)

diff --git a/src/Python/ccpi/reconstruction/AstraDevice.py b/src/Python/ccpi/reconstruction/AstraDevice.py
index d854183..ba174b3 100644
--- a/src/Python/ccpi/reconstruction/AstraDevice.py
+++ b/src/Python/ccpi/reconstruction/AstraDevice.py
@@ -1,5 +1,5 @@
 import astra
-from DeviceModel import DeviceModel
+from ccpi.reconstruction.DeviceModel import DeviceModel
 
 class AstraDevice(DeviceModel):
     '''Concrete class for Astra Device'''
@@ -9,6 +9,9 @@ class AstraDevice(DeviceModel):
                  data_aquisition_geometry,
                  reconstructed_volume_geometry):
         
+        super(AstraDevice, self).__init__(device_type,
+                                          data_aquisition_geometry,
+                                          reconstructed_volume_geometry)
 
         self.proj_geom = astra.creators.create_proj_geom(
             device_type,
@@ -17,7 +20,6 @@ class AstraDevice(DeviceModel):
             self.acquisition_data_geometry['cameraX'],
             self.acquisition_data_geometry['cameraY'],
             self.acquisition_data_geometry['angles'],
-            angles_rad
             )
 
         self.vol_geom = astra.creators.create_vol_geom(
@@ -48,19 +50,27 @@ Uses Astra-toolbox
                    self.vol_geom)
         astra.matlab.data3d('delete', idx)
         return volume
-
     def createReducedDevice(self):
-        return AstraDevice(self.proj_geom['type'],
-                    {'detectorSpacingX' : self.proj_geom['DetectorSpacingX'] ,
-                     'detectorSpacingY' : self.proj_geom['DetectorSpacingY'] ,
-                     'cameraX' : self.proj_geom['DetectorColCount'] ,
-                     'cameraY' : 1 ,
-                     'angles' : self.proj_geom['ProjectionAngles'] } ,
-                    {
-                        'X' : self.vol_geom['GridColCount'],
-                        'Y' : self.vol_geom['GridRowCount']
-                        'Z' : 1} ) 
+        proj_geom = astra.creators.create_proj_geom(
+            device_type,
+            self.acquisition_data_geometry['detectorSpacingX'],
+            self.acquisition_data_geometry['detectorSpacingX'],
+            self.acquisition_data_geometry['cameraX'],
+            1,
+            self.acquisition_data_geometry['angles'],
+            )
 
+        vol_geom = astra.creators.create_vol_geom(
+            self.reconstructed_volume_geometry['X'],
+            self.reconstructed_volume_geometry['Y'],
+            1
+            )
+        return AstraDevice(proj_geom['type'] ,
+                           proj_geom,
+                           vol_geom)
+        
+
+        
 if __name__=="main":
     a = AstraDevice()
 
diff --git a/src/Python/ccpi/reconstruction/DeviceModel.py b/src/Python/ccpi/reconstruction/DeviceModel.py
index 1717321..6214437 100644
--- a/src/Python/ccpi/reconstruction/DeviceModel.py
+++ b/src/Python/ccpi/reconstruction/DeviceModel.py
@@ -44,7 +44,7 @@ reconstructed_volume_geometry: tuple (dimX,dimY,dimZ)
             'Z': reconstructed_volume_geometry[2] }
 
     @abstractmethod
-    def doFowardProject(self, volume):
+    def doForwardProject(self, volume):
         '''Forward projects the volume according to the device geometry'''
         return NotImplemented
 
@@ -53,5 +53,10 @@ reconstructed_volume_geometry: tuple (dimX,dimY,dimZ)
     def doBackwardProject(self, projections):
         '''Backward projects the projections according to the device geometry'''
         return NotImplemented
+
+    @abstractmethod
+    def createReducedDevice(self):
+        '''Create a Device to do forward/backward projections on 2D slices'''
+        return NotImplemented
     
 
diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
index 1e464a1..d2eefc0 100644
--- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -27,7 +27,7 @@ import numpy
 from enum import Enum
 
 import astra
-from ccpi.reconstruction.AstraDevice import AstraDevice
+#from ccpi.reconstruction.AstraDevice import AstraDevice
 
    
     
@@ -74,7 +74,10 @@ class FISTAReconstructor():
     # 3. "A novel tomographic reconstruction method based on the robust
     # Student's t function for suppressing data outliers" D. Kazantsev et.al.
     # D. Kazantsev, 2016-17
-    def __init__(self, projector_geometry, output_geometry, input_sinogram,
+    def __init__(self, projector_geometry,
+                 output_geometry,
+                 input_sinogram,
+                 device, 
                  **kwargs):
         # handle parmeters:
         # obligatory parameters
@@ -87,16 +90,10 @@ class FISTAReconstructor():
         self.pars['number_of_angles'] = nangles
         self.pars['SlicesZ'] = sliceZ
         self.pars['output_volume'] = None
-
+        self.pars['device'] = device
 
         
-        device = createAstraDevice(projector_geometry, output_geometry)
-        self.setParameter(device_model=device)
-        proj_geomT = projector_geometry.copy();
-        proj_geomT['DetectorRowCount'] = 1;
-        vol_geomT = output_geometry.copy();
-        vol_geomT['GridSliceCount'] = 1;
-        reduced_device = createAstraDevice(proj_geomT, vol_geomT)
+        reduced_device = device.createReducedDevice()
         self.setParameter(reduced_device_model=reduced_device)
 
         self.use_device = True
@@ -187,21 +184,7 @@ class FISTAReconstructor():
             self.pars['initialize'] = False
 
         
-    def createAstraDevice(self, projector_geometry, output_geometry):
-        '''TODO remove'''
-        
-        device = AstraDevice(DeviceModel.PARALLEL3D,
-                    {'detectorSpacingX' : projector_geometry['DetectorSpacingX'] ,
-                     'detectorSpacingY' : projector_geometry['DetectorSpacingY'] ,
-                     'cameraX' : projector_geometry['DetectorColCount'] ,
-                     'cameraY' : projector_geometry['DetectorRowCount'] ,
-                     'angles' : projector_geometry['ProjectionAngles'] } ,
-                    {
-                        'X' : output_geometry['GridColCount'],
-                        'Y' : output_geometry['GridRowCount']
-                        'Z' : output_geometry['GridSliceCount']} )
-        return device
-            
+                
     def setParameter(self, **kwargs):
         '''set named parameter for the reconstructor engine
         
diff --git a/src/Python/test/test_reconstructor.py b/src/Python/test/test_reconstructor.py
index 3342301..343b9bb 100644
--- a/src/Python/test/test_reconstructor.py
+++ b/src/Python/test/test_reconstructor.py
@@ -12,6 +12,9 @@ import numpy
 from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
 import astra
 import matplotlib.pyplot as plt
+from ccpi.imaging.Regularizer import Regularizer
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
 
 def RMSE(signal1, signal2):
     '''RMSE Root Mean Squared Error'''
@@ -22,7 +25,23 @@ def RMSE(signal1, signal2):
         return err
     else:
         raise Exception('Input signals must have the same shape')
-  
+
+def createAstraDevice(projector_geometry, output_geometry):
+    '''TODO remove'''
+    
+    device = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+                [projector_geometry['DetectorSpacingX'] ,
+                 projector_geometry['DetectorSpacingY'] ,
+                 projector_geometry['DetectorColCount'] ,
+                 projector_geometry['DetectorRowCount'] ,
+                 projector_geometry['ProjectionAngles']
+                 ],
+                [
+                    output_geometry['GridColCount'],
+                    output_geometry['GridRowCount'], 
+                    output_geometry['GridSliceCount'] ] )
+    return device
+
 filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
 nx = h5py.File(filename, "r")
 #getEntry(nx, '/')
@@ -65,23 +84,23 @@ vol_geom = astra.creators.create_vol_geom( image_size_x,
 ## First pass the arguments to the FISTAReconstructor and test the
 ## Lipschitz constant
 
-fistaRecon = FISTAReconstructor(proj_geom,
-                                vol_geom,
-                                Sino3D ,
-                                weights=Weights3D)
-
-print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
-fistaRecon.setParameter(number_of_iterations = 12)
-fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
-fistaRecon.setParameter(ring_alpha = 21)
-fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
-
-reg = Regularizer(Regularizer.Algorithm.LLT_model)
-reg.setParameter(regularization_parameter=25,
-                          time_step=0.0003,
-                          tolerance_constant=0.0001,
-                          number_of_iterations=300)
-fistaRecon.setParameter(regularizer = reg)
+##fistaRecon = FISTAReconstructor(proj_geom,
+##                                vol_geom,
+##                                Sino3D ,
+##                                weights=Weights3D)
+##
+##print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+##fistaRecon.setParameter(number_of_iterations = 12)
+##fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+##fistaRecon.setParameter(ring_alpha = 21)
+##fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+##
+##reg = Regularizer(Regularizer.Algorithm.LLT_model)
+##reg.setParameter(regularization_parameter=25,
+##                          time_step=0.0003,
+##                          tolerance_constant=0.0001,
+##                          number_of_iterations=300)
+##fistaRecon.setParameter(regularizer=reg)
 
 ## Ordered subset
 if False:
@@ -294,16 +313,24 @@ if False:
 ##            fprintf('%s %i  %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
 ##        end
 else:
+    
+    # create a device for forward/backprojection
+    astradevice = createAstraDevice(proj_geom, vol_geom)
     fistaRecon = FISTAReconstructor(proj_geom,
                                 vol_geom,
                                 Sino3D ,
-                                weights=Weights3D)
+                                device = astradevice,
+                                weights=Weights3D
+                                )
 
     print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
-    fistaRecon.setParameter(number_of_iterations = 12)
+    fistaRecon.setParameter(number_of_iterations = 3)
     fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
     fistaRecon.setParameter(ring_alpha = 21)
     fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+
+    
+    
     fistaRecon.prepareForIteration()
     X = fistaRecon.iterate(numpy.load("X.npy"))
     numpy.save("X_out.npy", X)
-- 
cgit v1.2.3


From 557184952b788a6cb58022d6853556c96dfe02f7 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Fri, 27 Oct 2017 16:46:17 +0100
Subject: Added AstraDevice and DeviceModel

---
 src/Python/CMakeLists.txt | 2 ++
 1 file changed, 2 insertions(+)

diff --git a/src/Python/CMakeLists.txt b/src/Python/CMakeLists.txt
index aecc2ee..506159a 100644
--- a/src/Python/CMakeLists.txt
+++ b/src/Python/CMakeLists.txt
@@ -114,6 +114,8 @@ endif()
 # fista reconstructor
 file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/FISTAReconstructor.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
 file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/DeviceModel.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/AstraDevice.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
 
 configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup-fista.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup-fista.py)
 file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe)
-- 
cgit v1.2.3


From f5243c6307cfc37072b04e39536b1134717a418b Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Fri, 27 Oct 2017 16:50:49 +0100
Subject: bugfix

---
 src/Python/ccpi/reconstruction/AstraDevice.py | 2 ++
 1 file changed, 2 insertions(+)

diff --git a/src/Python/ccpi/reconstruction/AstraDevice.py b/src/Python/ccpi/reconstruction/AstraDevice.py
index ba174b3..999533b 100644
--- a/src/Python/ccpi/reconstruction/AstraDevice.py
+++ b/src/Python/ccpi/reconstruction/AstraDevice.py
@@ -13,6 +13,7 @@ class AstraDevice(DeviceModel):
                                           data_aquisition_geometry,
                                           reconstructed_volume_geometry)
 
+        self.type = device_type
         self.proj_geom = astra.creators.create_proj_geom(
             device_type,
             self.acquisition_data_geometry['detectorSpacingX'],
@@ -50,6 +51,7 @@ Uses Astra-toolbox
                    self.vol_geom)
         astra.matlab.data3d('delete', idx)
         return volume
+    
     def createReducedDevice(self):
         proj_geom = astra.creators.create_proj_geom(
             device_type,
-- 
cgit v1.2.3


From ec373635a4b3e095cfcc87ae03bd52b05389e5d1 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Mon, 30 Oct 2017 11:09:53 +0000
Subject: bugfixes for AstraDevice use

---
 src/Python/ccpi/reconstruction/AstraDevice.py      | 36 +++++++++++---------
 src/Python/ccpi/reconstruction/DeviceModel.py      |  3 +-
 .../ccpi/reconstruction/FISTAReconstructor.py      | 28 ++++++++--------
 src/Python/test/test_reconstructor.py              | 39 +++++++++++++++++++---
 4 files changed, 71 insertions(+), 35 deletions(-)

diff --git a/src/Python/ccpi/reconstruction/AstraDevice.py b/src/Python/ccpi/reconstruction/AstraDevice.py
index 999533b..ac9206e 100644
--- a/src/Python/ccpi/reconstruction/AstraDevice.py
+++ b/src/Python/ccpi/reconstruction/AstraDevice.py
@@ -1,5 +1,6 @@
 import astra
 from ccpi.reconstruction.DeviceModel import DeviceModel
+import numpy
 
 class AstraDevice(DeviceModel):
     '''Concrete class for Astra Device'''
@@ -17,7 +18,7 @@ class AstraDevice(DeviceModel):
         self.proj_geom = astra.creators.create_proj_geom(
             device_type,
             self.acquisition_data_geometry['detectorSpacingX'],
-            self.acquisition_data_geometry['detectorSpacingX'],
+            self.acquisition_data_geometry['detectorSpacingY'],
             self.acquisition_data_geometry['cameraX'],
             self.acquisition_data_geometry['cameraY'],
             self.acquisition_data_geometry['angles'],
@@ -34,10 +35,15 @@ class AstraDevice(DeviceModel):
 
 Uses Astra-toolbox
 '''
-        sino_id, y = astra.creators.create_sino3d_gpu(
-            volume, self.proj_geom, self.vol_geom)
-        astra.matlab.data3d('delete', sino_id)
-        return y
+              
+        try:
+            sino_id, y = astra.creators.create_sino3d_gpu(
+                volume, self.proj_geom, self.vol_geom)
+            astra.matlab.data3d('delete', sino_id)
+            return y
+        except Exception(e):
+            print(e)
+            print("Value Error: ", self.proj_geom, self.vol_geom)
 
     def doBackwardProject(self, projections):
         '''Backward projects the projections according to the device geometry
@@ -49,27 +55,25 @@ Uses Astra-toolbox
                    projections,
                    self.proj_geom,
                    self.vol_geom)
+        
         astra.matlab.data3d('delete', idx)
         return volume
     
     def createReducedDevice(self):
-        proj_geom = astra.creators.create_proj_geom(
-            device_type,
-            self.acquisition_data_geometry['detectorSpacingX'],
-            self.acquisition_data_geometry['detectorSpacingX'],
+        proj_geom =  [ 
             self.acquisition_data_geometry['cameraX'],
             1,
-            self.acquisition_data_geometry['angles'],
-            )
+            self.acquisition_data_geometry['detectorSpacingX'],
+            self.acquisition_data_geometry['detectorSpacingY'],
+            self.acquisition_data_geometry['angles']
+            ]
 
-        vol_geom = astra.creators.create_vol_geom(
+        vol_geom = [
             self.reconstructed_volume_geometry['X'],
             self.reconstructed_volume_geometry['Y'],
             1
-            )
-        return AstraDevice(proj_geom['type'] ,
-                           proj_geom,
-                           vol_geom)
+            ]
+        return AstraDevice(self.type, proj_geom, vol_geom)
         
 
         
diff --git a/src/Python/ccpi/reconstruction/DeviceModel.py b/src/Python/ccpi/reconstruction/DeviceModel.py
index 6214437..eeb9a34 100644
--- a/src/Python/ccpi/reconstruction/DeviceModel.py
+++ b/src/Python/ccpi/reconstruction/DeviceModel.py
@@ -28,7 +28,8 @@ HELICAL'''
 
 Mandatory parameters are:
 device_type from DeviceType Enum
-data_acquisition_geometry: tuple (camera_X, camera_Y)
+data_acquisition_geometry: tuple (camera_X, camera_Y, detectorSpacingX,
+                                  detectorSpacingY, angles)
 reconstructed_volume_geometry: tuple (dimX,dimY,dimZ)
 '''
         self.device_geometry = device_type
diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
index d2eefc0..0607003 100644
--- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -27,7 +27,7 @@ import numpy
 from enum import Enum
 
 import astra
-#from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.AstraDevice import AstraDevice
 
    
     
@@ -90,11 +90,7 @@ class FISTAReconstructor():
         self.pars['number_of_angles'] = nangles
         self.pars['SlicesZ'] = sliceZ
         self.pars['output_volume'] = None
-        self.pars['device'] = device
-
-        
-        reduced_device = device.createReducedDevice()
-        self.setParameter(reduced_device_model=reduced_device)
+        self.pars['device_model'] = device
 
         self.use_device = True
         
@@ -183,6 +179,9 @@ class FISTAReconstructor():
         if not 'initialize' in kwargs.keys():
             self.pars['initialize'] = False
 
+        reduced_device = device.createReducedDevice()
+        self.setParameter(reduced_device_model=reduced_device)
+
         
                 
     def setParameter(self, **kwargs):
@@ -455,22 +454,24 @@ class FISTAReconstructor():
                                                 'ring_lambda_R_L1'])
                    
         t = 1
-        
+
         device = self.getParameter('device_model')
         reduced_device = self.getParameter('reduced_device_model')
         
         for i in range(self.getParameter('number_of_iterations')):
+            print("iteration", i)
             X_old = X.copy()
             t_old = t
             r_old = self.r.copy()
-            if self.getParameter('projector_geometry')['type'] == 'parallel' or \
-               self.getParameter('projector_geometry')['type'] == 'fanflat' or \
-               self.getParameter('projector_geometry')['type'] == 'fanflat_vec':
+            pg = self.getParameter('projector_geometry')['type']
+            if pg == 'parallel' or \
+               pg == 'fanflat' or \
+               pg == 'fanflat_vec':
                 # if the geometry is parallel use slice-by-slice
                 # projection-backprojection routine
                 #sino_updt = zeros(size(sino),'single');
                 
-                if self.use_device:
+                if self.use_device :
                     self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
                     
                     for kkk in range(SlicesZ):
@@ -491,6 +492,7 @@ class FISTAReconstructor():
                 # for divergent 3D geometry (watch the GPU memory overflow in
                 # ASTRA versions < 1.8)
                 #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+                
                 if self.use_device:
                     self.sino_updt = device.doForwardProject(X_t)
                 else:
@@ -563,7 +565,7 @@ class FISTAReconstructor():
             #sino_updt = zeros(size(sino),'single');
             x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
                 
-            if use_device:
+            if self.use_device:
                 proj_geomT = proj_geom.copy()
                 proj_geomT['DetectorRowCount'] = 1
                 vol_geomT = vol_geom.copy()
@@ -581,7 +583,7 @@ class FISTAReconstructor():
                     x_temp[kkk] = \
                         reduced_device.doBackwardProject(residual[kkk:kkk+1])
         else:
-            if use_device:
+            if self.use_device:
                 x_id, x_temp = \
                   astra.creators.create_backprojection3d_gpu(
                       residual, proj_geom, vol_geom)
diff --git a/src/Python/test/test_reconstructor.py b/src/Python/test/test_reconstructor.py
index 343b9bb..f4627d7 100644
--- a/src/Python/test/test_reconstructor.py
+++ b/src/Python/test/test_reconstructor.py
@@ -30,10 +30,10 @@ def createAstraDevice(projector_geometry, output_geometry):
     '''TODO remove'''
     
     device = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
-                [projector_geometry['DetectorSpacingX'] ,
-                 projector_geometry['DetectorSpacingY'] ,
+                [projector_geometry['DetectorRowCount'] ,
                  projector_geometry['DetectorColCount'] ,
-                 projector_geometry['DetectorRowCount'] ,
+                 projector_geometry['DetectorSpacingX'] ,
+                 projector_geometry['DetectorSpacingY'] ,
                  projector_geometry['ProjectionAngles']
                  ],
                 [
@@ -332,5 +332,34 @@ else:
     
     
     fistaRecon.prepareForIteration()
-    X = fistaRecon.iterate(numpy.load("X.npy"))
-    numpy.save("X_out.npy", X)
+    X = numpy.load("X.npy")
+##    rd = astradevice.createReducedDevice()
+##    print ("rd proj_geom" , rd.proj_geom)
+##    
+##        
+##    rd.doForwardProject(X[0:1])
+##    proj_geomT = proj_geom.copy()
+##    for ekey in rd.proj_geom.keys():
+##        if ekey == 'ProjectionAngles':
+##            valrd = numpy.shape(rd.proj_geom[ekey])
+##            valg  = numpy.shape(proj_geomT[ekey])
+##        else:
+##            valrd = rd.proj_geom[ekey]
+##            valg =  proj_geomT[ekey]
+##      
+##        print ("key {0}: RD {1} geomT {2}".format(ekey, valrd, valg))
+##        
+##        
+##    proj_geomT['DetectorRowCount'] = 1
+##    vol_geomT = vol_geom.copy()
+##    vol_geomT['GridSliceCount'] = 1;
+##    rd.proj_geom = proj_geomT.copy()
+##    rd.vol_geom = vol_geomT.copy()
+##
+##
+##
+##    sino_id, y = astra.creators.create_sino3d_gpu(
+##                X[0:1], rd.proj_geom, rd.vol_geom)
+    
+    X = fistaRecon.iterate(X)
+    #numpy.save("X_out.npy", X)
-- 
cgit v1.2.3


From 1a7d0382db817b5d35f3f45516301cc8003d9b2f Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Mon, 30 Oct 2017 11:35:19 +0000
Subject: regularization parameter is divided by Lipschitz constant

as 09f9bf9828c39bcdd870cfefbcb52e61451802eb
---
 src/Python/ccpi/reconstruction/FISTAReconstructor.py | 5 ++++-
 1 file changed, 4 insertions(+), 1 deletion(-)

diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
index 0607003..0a66e67 100644
--- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -602,7 +602,10 @@ class FISTAReconstructor():
         
         regularizer = self.getParameter('regularizer')
         if regularizer is not None:
-            return regularizer(input=X)
+            lc = self.getParameter('Lipschitz_constant')
+            reg_par = regularizer.getParameter('regularization_parameter') / lc
+            return regularizer(input=X,
+                               regularization_parameter = reg_par)
         else:
             return X
 
-- 
cgit v1.2.3


From 8bc351e5cba87769c3ed0e0c872e823f7f5943fb Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Tue, 31 Oct 2017 11:45:39 +0000
Subject: fixed setParameter

fixed setParameter
allows regularizer to output simply the image rather than list.
---
 src/Python/ccpi/imaging/Regularizer.py | 42 ++++++++++++++++++++++------------
 1 file changed, 27 insertions(+), 15 deletions(-)

diff --git a/src/Python/ccpi/imaging/Regularizer.py b/src/Python/ccpi/imaging/Regularizer.py
index 8ab6c6a..23799d6 100644
--- a/src/Python/ccpi/imaging/Regularizer.py
+++ b/src/Python/ccpi/imaging/Regularizer.py
@@ -108,6 +108,8 @@ class Regularizer():
             
         else:
             raise Exception('Unknown regularizer algorithm')
+
+        self.acceptedInputKeywords = pars.keys()
             
         return pars
     # parsForAlgorithm
@@ -134,17 +136,24 @@ class Regularizer():
                 raise Exception('Wrong parameter {0} for regularizer algorithm'.format(key))
     # setParameter
 	
-    def getParameter(self, **kwargs):
-        ret = {}
-        for key , value in kwargs.items():
-            if key in self.pars.keys():
-                ret[key] = self.pars[key]
+    def getParameter(self, key):
+        if type(key) is str:
+            if key in self.acceptedInputKeywords:
+                return self.pars[key]
+            else:
+                raise Exception('Unrecongnised parameter: {0} '.format(key) )
+        elif type(key) is list:
+            outpars = []
+            for k in key:
+                outpars.append(self.getParameter(k))
+            return outpars
         else:
-            raise Exception('Wrong parameter {0} for regularizer algorithm'.format(key))
-    # setParameter
+            raise Exception('Unhandled input {0}' .format(str(type(key))))
+        # getParameter
 	
         
-    def __call__(self, input = None, regularization_parameter = None, **kwargs):
+    def __call__(self, input = None, regularization_parameter = None,
+                 output_all = False, **kwargs):
         '''Actual call for the regularizer. 
         
         One can either set the regularization parameters first and then call the
@@ -179,19 +188,19 @@ class Regularizer():
         input = self.pars['input']
         regularization_parameter = self.pars['regularization_parameter']
         if self.algorithm == Regularizer.Algorithm.SplitBregman_TV :
-            return self.algorithm(input, regularization_parameter,
+            ret = self.algorithm(input, regularization_parameter,
                               self.pars['number_of_iterations'],
                               self.pars['tolerance_constant'],
                               self.pars['TV_penalty'].value )    
         elif self.algorithm == Regularizer.Algorithm.FGP_TV :
-            return self.algorithm(input, regularization_parameter,
+            ret = self.algorithm(input, regularization_parameter,
                               self.pars['number_of_iterations'],
                               self.pars['tolerance_constant'],
                               self.pars['TV_penalty'].value )
         elif self.algorithm == Regularizer.Algorithm.LLT_model :
             #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher)
             # no default
-            return self.algorithm(input, 
+            ret = self.algorithm(input, 
                               regularization_parameter,
                               self.pars['time_step'] , 
                               self.pars['number_of_iterations'],
@@ -200,7 +209,7 @@ class Regularizer():
         elif self.algorithm == Regularizer.Algorithm.PatchBased_Regul :
             #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher)
             # no default
-            return self.algorithm(input, regularization_parameter,
+            ret = self.algorithm(input, regularization_parameter,
                                   self.pars['searching_window_ratio'] , 
                                   self.pars['similarity_window_ratio'] , 
                                   self.pars['PB_filtering_parameter'])
@@ -208,7 +217,7 @@ class Regularizer():
             #LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher)
             # no default
             if len(np.shape(input)) == 2:
-                return self.algorithm(input, regularization_parameter,
+                ret = self.algorithm(input, regularization_parameter,
                                   self.pars['first_order_term'] , 
                                   self.pars['second_order_term'] , 
                                   self.pars['number_of_iterations'])
@@ -227,11 +236,14 @@ class Regularizer():
                 output = [out3d]
                 for i in range(1,len(out)):
                     output.append(out[i])
-                return output
+                ret = output
                 
                 
             
-            
+        if output_all:
+            return ret
+        else:
+            return ret[0]
         
     # __call__
     
-- 
cgit v1.2.3


From 4bbfd47b88b34b7a7ba1545f5f47de1fc4d15cc5 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Tue, 31 Oct 2017 11:46:58 +0000
Subject: Allows regularizer to output simply an image

---
 src/Python/ccpi/reconstruction/FISTAReconstructor.py | 5 +++--
 1 file changed, 3 insertions(+), 2 deletions(-)

diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
index 0a66e67..b8e1027 100644
--- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -597,7 +597,7 @@ class FISTAReconstructor():
         #astra.matlab.data3d('delete', sino_id)
         
 
-    def regularize(self, X):
+    def regularize(self, X , output_all=False):
         print ("FISTA Reconstructor: regularize")
         
         regularizer = self.getParameter('regularizer')
@@ -605,7 +605,8 @@ class FISTAReconstructor():
             lc = self.getParameter('Lipschitz_constant')
             reg_par = regularizer.getParameter('regularization_parameter') / lc
             return regularizer(input=X,
-                               regularization_parameter = reg_par)
+                               regularization_parameter = reg_par,
+                               output_all=output_all)
         else:
             return X
 
-- 
cgit v1.2.3


From c40959c88791f87a144d9e7ae0f81694e6a6ff2e Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Tue, 31 Oct 2017 11:48:10 +0000
Subject: demo updated

---
 src/Python/test/test_reconstructor.py | 54 ++++++++++++++++-------------------
 1 file changed, 24 insertions(+), 30 deletions(-)

diff --git a/src/Python/test/test_reconstructor.py b/src/Python/test/test_reconstructor.py
index f4627d7..40065e7 100644
--- a/src/Python/test/test_reconstructor.py
+++ b/src/Python/test/test_reconstructor.py
@@ -315,16 +315,36 @@ if False:
 else:
     
     # create a device for forward/backprojection
-    astradevice = createAstraDevice(proj_geom, vol_geom)
+    #astradevice = createAstraDevice(proj_geom, vol_geom)
+    
+    astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+                [proj_geom['DetectorRowCount'] ,
+                 proj_geom['DetectorColCount'] ,
+                 proj_geom['DetectorSpacingX'] ,
+                 proj_geom['DetectorSpacingY'] ,
+                 proj_geom['ProjectionAngles']
+                 ],
+                [
+                    vol_geom['GridColCount'],
+                    vol_geom['GridRowCount'], 
+                    vol_geom['GridSliceCount'] ] )
+
+    regul = Regularizer(Regularizer.Algorithm.FGP_TV)
+    regul.setParameter(regularization_parameter=5e6,
+                       number_of_iterations=50,
+                       tolerance_constant=1e-4,
+                       TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
+    
     fistaRecon = FISTAReconstructor(proj_geom,
                                 vol_geom,
                                 Sino3D ,
                                 device = astradevice,
-                                weights=Weights3D
+                                weights=Weights3D,
+                                regularizer = regul
                                 )
 
     print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
-    fistaRecon.setParameter(number_of_iterations = 3)
+    fistaRecon.setParameter(number_of_iterations = 18)
     fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
     fistaRecon.setParameter(ring_alpha = 21)
     fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
@@ -333,33 +353,7 @@ else:
     
     fistaRecon.prepareForIteration()
     X = numpy.load("X.npy")
-##    rd = astradevice.createReducedDevice()
-##    print ("rd proj_geom" , rd.proj_geom)
-##    
-##        
-##    rd.doForwardProject(X[0:1])
-##    proj_geomT = proj_geom.copy()
-##    for ekey in rd.proj_geom.keys():
-##        if ekey == 'ProjectionAngles':
-##            valrd = numpy.shape(rd.proj_geom[ekey])
-##            valg  = numpy.shape(proj_geomT[ekey])
-##        else:
-##            valrd = rd.proj_geom[ekey]
-##            valg =  proj_geomT[ekey]
-##      
-##        print ("key {0}: RD {1} geomT {2}".format(ekey, valrd, valg))
-##        
-##        
-##    proj_geomT['DetectorRowCount'] = 1
-##    vol_geomT = vol_geom.copy()
-##    vol_geomT['GridSliceCount'] = 1;
-##    rd.proj_geom = proj_geomT.copy()
-##    rd.vol_geom = vol_geomT.copy()
-##
-##
-##
-##    sino_id, y = astra.creators.create_sino3d_gpu(
-##                X[0:1], rd.proj_geom, rd.vol_geom)
+
     
     X = fistaRecon.iterate(X)
     #numpy.save("X_out.npy", X)
-- 
cgit v1.2.3


From 640d707362604d803bcf17f882dc70af83299bb3 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Tue, 31 Oct 2017 11:48:29 +0000
Subject: first working OS FISTA python test

---
 src/Python/test/test_reconstructor-os.py | 71 +++++++++++++++++++++-----------
 1 file changed, 47 insertions(+), 24 deletions(-)

diff --git a/src/Python/test/test_reconstructor-os.py b/src/Python/test/test_reconstructor-os.py
index 3f419cf..8a0aad8 100644
--- a/src/Python/test/test_reconstructor-os.py
+++ b/src/Python/test/test_reconstructor-os.py
@@ -13,6 +13,8 @@ from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
 import astra
 import matplotlib.pyplot as plt
 from ccpi.imaging.Regularizer import Regularizer
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
 
 def RMSE(signal1, signal2):
     '''RMSE Root Mean Squared Error'''
@@ -65,11 +67,22 @@ vol_geom = astra.creators.create_vol_geom( image_size_x,
 
 ## First pass the arguments to the FISTAReconstructor and test the
 ## Lipschitz constant
-
+astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+                [proj_geom['DetectorRowCount'] ,
+                 proj_geom['DetectorColCount'] ,
+                 proj_geom['DetectorSpacingX'] ,
+                 proj_geom['DetectorSpacingY'] ,
+                 proj_geom['ProjectionAngles']
+                 ],
+                [
+                    vol_geom['GridColCount'],
+                    vol_geom['GridRowCount'], 
+                    vol_geom['GridSliceCount'] ] )
 fistaRecon = FISTAReconstructor(proj_geom,
                                 vol_geom,
                                 Sino3D ,
-                                weights=Weights3D)
+                                weights=Weights3D,
+                                device=astradevice)
 
 print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
 fistaRecon.setParameter(number_of_iterations = 12)
@@ -81,18 +94,21 @@ fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
 #reg = Regularizer(Regularizer.Algorithm.FGP_TV)
 #reg.setParameter(regularization_parameter=0.005,
 #                          number_of_iterations=50)
-reg = Regularizer(Regularizer.Algorithm.LLT_model)
-reg.setParameter(regularization_parameter=25,
-                          time_step=0.0003,
+reg = Regularizer(Regularizer.Algorithm.FGP_TV)
+reg.setParameter(regularization_parameter=5e6,
                           tolerance_constant=0.0001,
-                          number_of_iterations=300)
+                          number_of_iterations=50)
 
+fistaRecon.setParameter(regularizer=reg)
+lc = fistaRecon.getParameter('Lipschitz_constant')
+reg.setParameter(regularization_parameter=5e6/lc)
 
 ## Ordered subset
 if True:
-    subsets = 16
+    subsets = 8
     fistaRecon.setParameter(subsets=subsets)
     fistaRecon.createOrderedSubsets()
+else:
     angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
     #binEdges = numpy.linspace(angles.min(),
     #                          angles.max(),
@@ -192,26 +208,29 @@ if True:
             #if SlicesZ > 1:
             #    vec = vec[:,1,:] # 1 or 0?
             r_x = fistaRecon.r_x
-            fistaRecon.r = (r_x - (1./L_const) * vec).copy()
+            # update ring variable
+            fistaRecon.r = (r_x - (1./L_const) * vec).copy() 
 
         # subset loop
         counterInd = 1
         geometry_type = fistaRecon.getParameter('projector_geometry')['type']
-        if geometry_type == 'parallel' or \
-           geometry_type == 'fanflat' or \
-           geometry_type == 'fanflat_vec' :
-            
-            for kkk in range(SlicesZ):
-                sino_id, sinoT[kkk] = \
-                         astra.creators.create_sino3d_gpu(
-                             X_t[kkk:kkk+1], proj_geomSUB, vol_geom)
-                sino_updt_Sub[kkk] = sinoT.T.copy()
-                
-        else:
-            sino_id, sino_updt_Sub = \
-                astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom)
-        
-        astra.matlab.data3d('delete', sino_id)
+        angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+    
+##        if geometry_type == 'parallel' or \
+##           geometry_type == 'fanflat' or \
+##           geometry_type == 'fanflat_vec' :
+##            
+##            for kkk in range(SlicesZ):
+##                sino_id, sinoT[kkk] = \
+##                         astra.creators.create_sino3d_gpu(
+##                             X_t[kkk:kkk+1], proj_geomSUB, vol_geom)
+##                sino_updt_Sub[kkk] = sinoT.T.copy()
+##                
+##        else:
+##            sino_id, sino_updt_Sub = \
+##                astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom)
+##        
+##        astra.matlab.data3d('delete', sino_id)
   
         for ss in range(fistaRecon.getParameter('subsets')):
             print ("Subset {0}".format(ss))
@@ -276,6 +295,7 @@ if True:
 
             else:
                 #PWLS model
+                # I guess we need to use mask here instead
                 residualSub = weights[:,CurrSubIndices,:] * \
                               ( sino_updt_Sub - sino[:,CurrSubIndices,:].squeeze() )
                 objective[i] = 0.5 * numpy.linalg.norm(residualSub)
@@ -310,7 +330,10 @@ if True:
         # for slices:
         # out = regularizer(input=X)
         print ("regularizer")
-        X = reg(input=X)[0]
+        reg = fistaRecon.getParameter('regularizer')
+        
+        X = reg(input=X,
+                output_all=False)
 
 
         ## FINAL
-- 
cgit v1.2.3


From 0174c3226d9d540d0adc874436bf5b8f7a80f9b5 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Tue, 31 Oct 2017 12:49:10 +0000
Subject: Added Ordered Subsets

---
 .../ccpi/reconstruction/FISTAReconstructor.py      | 186 +++++++++++++++++++--
 1 file changed, 173 insertions(+), 13 deletions(-)

diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
index b8e1027..4f1709c 100644
--- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -430,7 +430,13 @@ class FISTAReconstructor():
 
     # prepareForIteration
 
-    def iterate(self, Xin=None):
+    def iterate (self, Xin=None):
+        if self.getParameter('subset') == 0:
+            return self.iterateStandard(Xin)
+        else:
+            return self.iterateOrderedSubsets(Xin)
+        
+    def iterateStandard(self, Xin=None):
         print ("FISTA Reconstructor: iterate")
         
         if Xin is None:    
@@ -613,14 +619,14 @@ class FISTAReconstructor():
     def updateLoop(self, i, X, X_old, r_old, t, t_old):
         print ("FISTA Reconstructor: update loop")
         lambdaR_L1 = self.getParameter('ring_lambda_R_L1')
-        if lambdaR_L1 > 0:
-            self.r = numpy.max(
-                numpy.abs(self.r) - lambdaR_L1 , 0) * \
-                numpy.sign(self.r)
+            
         t = (1 + numpy.sqrt(1 + 4 * t**2))/2
         X_t = X + (((t_old -1)/t) * (X - X_old))
 
         if lambdaR_L1 > 0:
+            self.r = numpy.max(
+                numpy.abs(self.r) - lambdaR_L1 , 0) * \
+                numpy.sign(self.r)
             self.r_x = self.r + \
                              (((t_old-1)/t) * (self.r - r_old))
 
@@ -636,8 +642,8 @@ class FISTAReconstructor():
             print (string.format(i,Resid_error[i], self.objective[i]))
         return (X , X_t, t)
 
-    def os_iterate(self, Xin=None):
-        print ("FISTA Reconstructor: iterate")
+    def iterateOS(self, Xin=None):
+        print ("FISTA Reconstructor: Ordered Subsets iterate")
         
         if Xin is None:    
             if self.getParameter('initialize'):
@@ -653,9 +659,163 @@ class FISTAReconstructor():
         X_t = X.copy()
 
         # some useful constants
-        proj_geom , vol_geom, sino , \
-          SlicesZ, weights , alpha_ring ,\
-          lambdaR_L1 , L_const = self.getParameter(
-            ['projector_geometry' , 'output_geometry',
-             'input_sinogram', 'SlicesZ' ,  'weights', 'ring_alpha' ,
-             'ring_lambda_R_L1', 'Lipschitz_constant'])
+        proj_geom ,    vol_geom, sino , \
+          SlicesZ,     weights , alpha_ring ,\
+          lambdaR_L1 , L_const , iterFISTA         = self.getParameter(
+            ['projector_geometry' , 'output_geometry', 'input_sinogram',
+             'SlicesZ' ,            'weights',         'ring_alpha' ,
+             'ring_lambda_R_L1',    'Lipschitz_constant',
+             'number_of_iterations'])
+
+        
+        # errors vector (if the ground truth is given)
+        Resid_error = numpy.zeros((iterFISTA));
+        # objective function values vector
+        objective = numpy.zeros((iterFISTA)); 
+
+          
+        t = 1
+
+        ## additional for 
+        proj_geomSUB = proj_geom.copy()
+        self.residual2 = numpy.zeros(numpy.shape(sino))
+        residual2 = self.residual2
+        sino_updt_FULL = self.residual.copy()
+        r_x = self.r.copy()
+
+        print ("starting iterations")
+        ##    % Outer FISTA iterations loop
+        for i in range(fistaRecon.getParameter('number_of_iterations')):
+            # With OS approach it becomes trickier to correlate independent
+            # subsets, hence additional work is required one solution is to
+            # work with a full sinogram at times
+
+            r_old = self.r.copy()
+            t_old = t
+            SlicesZ, anglesNumb, Detectors = \
+                        numpy.shape(self.getParameter('input_sinogram'))        ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
+            if (i > 1 and lambdaR_L1 > 0) :
+                for kkk in range(anglesNumb):
+                     
+                     residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+                                           ((sino_updt_FULL[:,kkk,:]).squeeze() - \
+                                            (sino[:,kkk,:]).squeeze() -\
+                                            (alpha_ring * r_x)
+                                            )
+                
+                vec = self.residual.sum(axis = 1)
+                #if SlicesZ > 1:
+                #    vec = vec[:,1,:] # 1 or 0?
+                r_x = self.r_x
+                # update ring variable
+                self.r = (r_x - (1./L_const) * vec).copy()
+
+            # subset loop
+            counterInd = 1
+            geometry_type = self.getParameter('projector_geometry')['type']
+            angles = self.getParameter('projector_geometry')['ProjectionAngles']
+
+            for ss in range(self.getParameter('subsets')):
+                print ("Subset {0}".format(ss))
+                X_old = X.copy()
+                t_old = t
+                
+                # the number of projections per subset
+                numProjSub = self.getParameter('os_bins')[ss]
+                CurrSubIndices = self.getParameter('os_indices')\
+                                 [counterInd:counterInd+numProjSub]
+                #print ("Len CurrSubIndices {0}".format(numProjSub))
+                mask = numpy.zeros(numpy.shape(angles), dtype=bool)
+                cc = 0
+                for j in range(len(CurrSubIndices)):
+                    mask[int(CurrSubIndices[j])] = True
+                proj_geomSUB['ProjectionAngles'] = angles[mask]
+
+                shape = list(numpy.shape(self.getParameter('input_sinogram')))
+                shape[1] = numProjSub
+                sino_updt_Sub = numpy.zeros(shape)
+                if geometry_type == 'parallel' or \
+                   geometry_type == 'fanflat' or \
+                   geometry_type == 'fanflat_vec' :
+
+                    for kkk in range(SlicesZ):
+                        sino_id, sinoT = astra.creators.create_sino3d_gpu (
+                            X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
+                        sino_updt_Sub[kkk] = sinoT.T.copy()
+                        
+                else:
+                    # for 3D geometry (watch the GPU memory overflow in
+                    # ASTRA < 1.8)
+                    sino_id, sino_updt_Sub = \
+                         astra.creators.create_sino3d_gpu (X_t, proj_geomSUB, vol_geom)
+                    
+                astra.matlab.data3d('delete', sino_id)
+        
+                
+                if lambdaR_L1 > 0 :
+                    ## RING REMOVAL
+                    print ("ring removal")
+                    residualSub = self.ringRemovalOrderedSubsets(sino_updt_Sub,
+                                                   sino_updt_FULL)
+                else:
+                    #PWLS model
+                    print ("PWLS model")
+                    residualSub = weights[:,CurrSubIndices,:] * \
+                                  ( sino_updt_Sub - \
+                                    sino[:,CurrSubIndices,:].squeeze() )
+                    objective[i] = 0.5 * numpy.linalg.norm(residualSub)
+
+                # projection/backprojection routine
+                if geometry_type == 'parallel' or \
+                   geometry_type == 'fanflat' or \
+                   geometry_type == 'fanflat_vec' :
+                    # if geometry is 2D use slice-by-slice projection-backprojection
+                    # routine
+                    x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32)
+                    for kkk in range(SlicesZ):
+                        
+                        x_id, x_temp[kkk] = \
+                                 astra.creators.create_backprojection3d_gpu(
+                                     residualSub[kkk:kkk+1],
+                                     proj_geomSUB, vol_geom)
+                        
+                else:
+                    x_id, x_temp = \
+                          astra.creators.create_backprojection3d_gpu(
+                              residualSub, proj_geomSUB, vol_geom)
+
+                astra.matlab.data3d('delete', x_id)
+                X = X_t - (1/L_const) * x_temp
+                ## REGULARIZATION
+                X = self.regularize(X)
+            
+            # FINAL
+            ## Update Loop
+            X , X_t, t = self.updateLoop(i, X, X_old, r_old, t, t_old)
+            self.setParameter(output_volume=X)
+            counterInd = counterInd + numProjSub
+
+        return X
+    
+    def ringRemovalOrderedSubsets(self, sino_updt_Sub, sino_updt_FULL):
+        residual = self.residual
+        r_x = self.r_x
+        weights , alpha_ring , sino = \
+                self.getParameter( ['weights', 'ring_alpha', 'input_sinogram'])
+        numProjSub = self.getParameter('os_bins')[ss]
+        CurrSubIndices = self.getParameter('os_indices')\
+                         [counterInd:counterInd+numProjSub]
+        residualSub = numpy.zeros(shape)
+
+        for kkk in range(numProjSub):
+            #print ("ring removal indC ... {0}".format(kkk))
+            indC = int(CurrSubIndices[kkk])
+            residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \
+                (sino_updt_Sub[:,kkk,:].squeeze() - \
+                sino[:,indC,:].squeeze() - alpha_ring * r_x)
+            # filling the full sinogram
+            sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze()
+
+        return residualSub
+
+
-- 
cgit v1.2.3


From f0ff4af86c11f46ed8d073787f13c135934dd2d9 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Tue, 31 Oct 2017 12:49:49 +0000
Subject: test class rather than script

---
 src/Python/test/test_reconstructor-os.py | 34 +++++++++++++++++++++++++++++---
 1 file changed, 31 insertions(+), 3 deletions(-)

diff --git a/src/Python/test/test_reconstructor-os.py b/src/Python/test/test_reconstructor-os.py
index 8a0aad8..78b24a3 100644
--- a/src/Python/test/test_reconstructor-os.py
+++ b/src/Python/test/test_reconstructor-os.py
@@ -85,10 +85,13 @@ fistaRecon = FISTAReconstructor(proj_geom,
                                 device=astradevice)
 
 print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
-fistaRecon.setParameter(number_of_iterations = 12)
+fistaRecon.setParameter(number_of_iterations = 2)
 fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
 fistaRecon.setParameter(ring_alpha = 21)
 fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+fistaRecon.setParameter(ring_lambda_R_L1 = 0)
+subsets = 8
+fistaRecon.setParameter(subsets=subsets)
 
 
 #reg = Regularizer(Regularizer.Algorithm.FGP_TV)
@@ -130,7 +133,7 @@ else:
             counter = counter + binsDiscr[jj] - 1
 
 
-if True:
+if False:
     print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
     print ("prepare for iteration")
     fistaRecon.prepareForIteration()
@@ -361,15 +364,40 @@ if True:
     numpy.save("X_out_os.npy", X)
 
 else:
+    astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+                [proj_geom['DetectorRowCount'] ,
+                 proj_geom['DetectorColCount'] ,
+                 proj_geom['DetectorSpacingX'] ,
+                 proj_geom['DetectorSpacingY'] ,
+                 proj_geom['ProjectionAngles']
+                 ],
+                [
+                    vol_geom['GridColCount'],
+                    vol_geom['GridRowCount'], 
+                    vol_geom['GridSliceCount'] ] )
+    regul = Regularizer(Regularizer.Algorithm.FGP_TV)
+    regul.setParameter(regularization_parameter=5e6,
+                       number_of_iterations=50,
+                       tolerance_constant=1e-4,
+                       TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
+
     fistaRecon = FISTAReconstructor(proj_geom,
                                 vol_geom,
                                 Sino3D ,
-                                weights=Weights3D)
+                                weights=Weights3D,
+                                device=astradevice,
+                                regularizer = regul,
+                                subsets=8)
 
     print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
     fistaRecon.setParameter(number_of_iterations = 12)
     fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
     fistaRecon.setParameter(ring_alpha = 21)
     fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+    #fistaRecon.setParameter(subsets=8)
+    
+    lc = fistaRecon.getParameter('Lipschitz_constant')
+    fistaRecon.getParameter('regularizer').setParameter(regularization_parameter=5e6/lc)
+    
     fistaRecon.prepareForIteration()
     X = fistaRecon.iterate(numpy.load("X.npy"))
-- 
cgit v1.2.3


From 21b6a5b640a13e4903341104de5744a750700071 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Tue, 31 Oct 2017 16:02:25 +0000
Subject: reconstructor class working with Ordered Subset

---
 .../ccpi/reconstruction/FISTAReconstructor.py      | 23 +++++++++++++---------
 1 file changed, 14 insertions(+), 9 deletions(-)

diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
index 4f1709c..b549755 100644
--- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -431,7 +431,7 @@ class FISTAReconstructor():
     # prepareForIteration
 
     def iterate (self, Xin=None):
-        if self.getParameter('subset') == 0:
+        if self.getParameter('subsets') == 0:
             return self.iterateStandard(Xin)
         else:
             return self.iterateOrderedSubsets(Xin)
@@ -608,10 +608,7 @@ class FISTAReconstructor():
         
         regularizer = self.getParameter('regularizer')
         if regularizer is not None:
-            lc = self.getParameter('Lipschitz_constant')
-            reg_par = regularizer.getParameter('regularization_parameter') / lc
             return regularizer(input=X,
-                               regularization_parameter = reg_par,
                                output_all=output_all)
         else:
             return X
@@ -642,7 +639,7 @@ class FISTAReconstructor():
             print (string.format(i,Resid_error[i], self.objective[i]))
         return (X , X_t, t)
 
-    def iterateOS(self, Xin=None):
+    def iterateOrderedSubsets(self, Xin=None):
         print ("FISTA Reconstructor: Ordered Subsets iterate")
         
         if Xin is None:    
@@ -685,7 +682,7 @@ class FISTAReconstructor():
 
         print ("starting iterations")
         ##    % Outer FISTA iterations loop
-        for i in range(fistaRecon.getParameter('number_of_iterations')):
+        for i in range(self.getParameter('number_of_iterations')):
             # With OS approach it becomes trickier to correlate independent
             # subsets, hence additional work is required one solution is to
             # work with a full sinogram at times
@@ -755,8 +752,11 @@ class FISTAReconstructor():
                 if lambdaR_L1 > 0 :
                     ## RING REMOVAL
                     print ("ring removal")
-                    residualSub = self.ringRemovalOrderedSubsets(sino_updt_Sub,
-                                                   sino_updt_FULL)
+                    residualSub = \
+                        self.ringRemovalOrderedSubsets(ss,
+                                                       counterInd,
+                                                       sino_updt_Sub,
+                                                       sino_updt_FULL)
                 else:
                     #PWLS model
                     print ("PWLS model")
@@ -797,7 +797,8 @@ class FISTAReconstructor():
 
         return X
     
-    def ringRemovalOrderedSubsets(self, sino_updt_Sub, sino_updt_FULL):
+    def ringRemovalOrderedSubsets(self, ss,counterInd,
+                                  sino_updt_Sub, sino_updt_FULL):
         residual = self.residual
         r_x = self.r_x
         weights , alpha_ring , sino = \
@@ -805,6 +806,10 @@ class FISTAReconstructor():
         numProjSub = self.getParameter('os_bins')[ss]
         CurrSubIndices = self.getParameter('os_indices')\
                          [counterInd:counterInd+numProjSub]
+
+        shape = list(numpy.shape(self.getParameter('input_sinogram')))
+        shape[1] = numProjSub
+            
         residualSub = numpy.zeros(shape)
 
         for kkk in range(numProjSub):
-- 
cgit v1.2.3


From 49daa0eab674de199443c2c74dcf86d861e2a61d Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Tue, 31 Oct 2017 16:40:59 +0000
Subject: progress using abstract device in class

squash later
---
 src/Python/ccpi/reconstruction/AstraDevice.py      | 24 +++++++---
 .../ccpi/reconstruction/FISTAReconstructor.py      | 52 +++++++++++++++-------
 src/Python/test/test_reconstructor-os.py           |  2 +-
 3 files changed, 56 insertions(+), 22 deletions(-)

diff --git a/src/Python/ccpi/reconstruction/AstraDevice.py b/src/Python/ccpi/reconstruction/AstraDevice.py
index ac9206e..61e95ce 100644
--- a/src/Python/ccpi/reconstruction/AstraDevice.py
+++ b/src/Python/ccpi/reconstruction/AstraDevice.py
@@ -41,7 +41,7 @@ Uses Astra-toolbox
                 volume, self.proj_geom, self.vol_geom)
             astra.matlab.data3d('delete', sino_id)
             return y
-        except Exception(e):
+        except Exception as e:
             print(e)
             print("Value Error: ", self.proj_geom, self.vol_geom)
 
@@ -59,19 +59,33 @@ Uses Astra-toolbox
         astra.matlab.data3d('delete', idx)
         return volume
     
-    def createReducedDevice(self):
+    def createReducedDevice(self, proj_par={'cameraY' : 1} , vol_par={'Z':1}):
+        '''Change the definition of the current device by changing some parameter
+
+VERY RISKY'''
+        for k,v in proj_par.items():
+            if k in self.acquisition_data_geometry.keys():
+                print ("Reduced device updating " , k , v)
+                self.acquisition_data_geometry[k] = v
+        print ("Reduced Device: ", self.acquisition_data_geometry)
         proj_geom =  [ 
             self.acquisition_data_geometry['cameraX'],
-            1,
+            self.acquisition_data_geometry['cameraY'],
             self.acquisition_data_geometry['detectorSpacingX'],
             self.acquisition_data_geometry['detectorSpacingY'],
             self.acquisition_data_geometry['angles']
             ]
-
+        
+        for k,v in vol_par.items():
+            if k in self.reconstructed_volume_geometry.keys():
+                print ("Reduced device updating " , k , v)
+                self.reconstructed_volume_geometry[k] = v
+        print ("Reduced Device: ",self.reconstructed_volume_geometry)
+        
         vol_geom = [
             self.reconstructed_volume_geometry['X'],
             self.reconstructed_volume_geometry['Y'],
-            1
+            self.reconstructed_volume_geometry['Z']
             ]
         return AstraDevice(self.type, proj_geom, vol_geom)
         
diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
index b549755..3c576c4 100644
--- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -664,7 +664,7 @@ class FISTAReconstructor():
              'ring_lambda_R_L1',    'Lipschitz_constant',
              'number_of_iterations'])
 
-        
+            
         # errors vector (if the ground truth is given)
         Resid_error = numpy.zeros((iterFISTA));
         # objective function values vector
@@ -727,7 +727,12 @@ class FISTAReconstructor():
                 for j in range(len(CurrSubIndices)):
                     mask[int(CurrSubIndices[j])] = True
                 proj_geomSUB['ProjectionAngles'] = angles[mask]
-
+                if self.use_device:
+                    device = self.getParameter('device_model')\
+                             .createReducedDevice(
+                                 proj_par={'angles':angles[mask]},
+                                 vol_par={})
+        
                 shape = list(numpy.shape(self.getParameter('input_sinogram')))
                 shape[1] = numProjSub
                 sino_updt_Sub = numpy.zeros(shape)
@@ -736,17 +741,24 @@ class FISTAReconstructor():
                    geometry_type == 'fanflat_vec' :
 
                     for kkk in range(SlicesZ):
-                        sino_id, sinoT = astra.creators.create_sino3d_gpu (
-                            X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
-                        sino_updt_Sub[kkk] = sinoT.T.copy()
+                        if self.use_device:
+                            sinoT = device.doForwardProject(X_t[kkk:kkk+1])
+                        else:
+                            sino_id, sinoT = astra.creators.create_sino3d_gpu (
+                                X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
+                            sino_updt_Sub[kkk] = sinoT.T.copy()
+                            astra.matlab.data3d('delete', sino_id)
                         
                 else:
                     # for 3D geometry (watch the GPU memory overflow in
                     # ASTRA < 1.8)
-                    sino_id, sino_updt_Sub = \
-                         astra.creators.create_sino3d_gpu (X_t, proj_geomSUB, vol_geom)
-                    
-                astra.matlab.data3d('delete', sino_id)
+                    if self.use_device:
+                        sino_updt_Sub = device.doForwardProject(X_t)
+                    else:
+                        sino_id, sino_updt_Sub = \
+                             astra.creators.create_sino3d_gpu (X_t, proj_geomSUB, vol_geom)
+                        
+                        astra.matlab.data3d('delete', sino_id)
         
                 
                 if lambdaR_L1 > 0 :
@@ -773,18 +785,26 @@ class FISTAReconstructor():
                     # routine
                     x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32)
                     for kkk in range(SlicesZ):
-                        
-                        x_id, x_temp[kkk] = \
-                                 astra.creators.create_backprojection3d_gpu(
-                                     residualSub[kkk:kkk+1],
-                                     proj_geomSUB, vol_geom)
+                        if self.use_device:
+                            x_temp[kkk] = device.doBackwardProject(
+                                residualSub[kkk:kkk+1])
+                        else:
+                            x_id, x_temp[kkk] = \
+                                     astra.creators.create_backprojection3d_gpu(
+                                         residualSub[kkk:kkk+1],
+                                         proj_geomSUB, vol_geom)
+                            astra.matlab.data3d('delete', x_id)
                         
                 else:
-                    x_id, x_temp = \
+                    if self.use_device:
+                        x_temp = device.doBackwardProject(
+                            residualSub)
+                    else:
+                        x_id, x_temp = \
                           astra.creators.create_backprojection3d_gpu(
                               residualSub, proj_geomSUB, vol_geom)
 
-                astra.matlab.data3d('delete', x_id)
+                        astra.matlab.data3d('delete', x_id)
                 X = X_t - (1/L_const) * x_temp
                 ## REGULARIZATION
                 X = self.regularize(X)
diff --git a/src/Python/test/test_reconstructor-os.py b/src/Python/test/test_reconstructor-os.py
index 78b24a3..21b7ecd 100644
--- a/src/Python/test/test_reconstructor-os.py
+++ b/src/Python/test/test_reconstructor-os.py
@@ -390,7 +390,7 @@ else:
                                 subsets=8)
 
     print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
-    fistaRecon.setParameter(number_of_iterations = 12)
+    fistaRecon.setParameter(number_of_iterations = 2)
     fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
     fistaRecon.setParameter(ring_alpha = 21)
     fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
-- 
cgit v1.2.3


From 368e88c981b270cc3da1b9bcae4bd63213263480 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Wed, 1 Nov 2017 16:30:47 +0000
Subject: bugfix in createReducedDevice

---
 src/Python/ccpi/reconstruction/AstraDevice.py | 44 +++++++++++++++------------
 1 file changed, 25 insertions(+), 19 deletions(-)

diff --git a/src/Python/ccpi/reconstruction/AstraDevice.py b/src/Python/ccpi/reconstruction/AstraDevice.py
index 61e95ce..b403f69 100644
--- a/src/Python/ccpi/reconstruction/AstraDevice.py
+++ b/src/Python/ccpi/reconstruction/AstraDevice.py
@@ -23,12 +23,20 @@ class AstraDevice(DeviceModel):
             self.acquisition_data_geometry['cameraY'],
             self.acquisition_data_geometry['angles'],
             )
-
+        print ("Astra device created:")
+        print ("Camera : {0}x{1}".format(self.proj_geom['DetectorColCount'],
+               self.proj_geom['DetectorRowCount']))
+        print ("number of projections " , len(self.proj_geom['ProjectionAngles']))
+        
         self.vol_geom = astra.creators.create_vol_geom(
             self.reconstructed_volume_geometry['X'],
             self.reconstructed_volume_geometry['Y'],
             self.reconstructed_volume_geometry['Z']
             )
+        print ("Reconstruction volume:")
+        print ("[{0},{1},{2}]".format(self.vol_geom['GridColCount'],
+                                      self.vol_geom['GridRowCount'],
+                                      self.vol_geom['GridSliceCount']))
 
     def doForwardProject(self, volume):
         '''Forward projects the volume according to the device geometry
@@ -60,32 +68,30 @@ Uses Astra-toolbox
         return volume
     
     def createReducedDevice(self, proj_par={'cameraY' : 1} , vol_par={'Z':1}):
-        '''Change the definition of the current device by changing some parameter
+        '''Create a new device based on the current device by changing some parameter
 
 VERY RISKY'''
+        acquisition_data_geometry = self.acquisition_data_geometry.copy()
         for k,v in proj_par.items():
-            if k in self.acquisition_data_geometry.keys():
-                print ("Reduced device updating " , k , v)
-                self.acquisition_data_geometry[k] = v
-        print ("Reduced Device: ", self.acquisition_data_geometry)
+            if k in acquisition_data_geometry.keys():
+                acquisition_data_geometry[k] = v
         proj_geom =  [ 
-            self.acquisition_data_geometry['cameraX'],
-            self.acquisition_data_geometry['cameraY'],
-            self.acquisition_data_geometry['detectorSpacingX'],
-            self.acquisition_data_geometry['detectorSpacingY'],
-            self.acquisition_data_geometry['angles']
+            acquisition_data_geometry['cameraX'],
+            acquisition_data_geometry['cameraY'],
+            acquisition_data_geometry['detectorSpacingX'],
+            acquisition_data_geometry['detectorSpacingY'],
+            acquisition_data_geometry['angles']
             ]
-        
+
+        reconstructed_volume_geometry = self.reconstructed_volume_geometry.copy()
         for k,v in vol_par.items():
-            if k in self.reconstructed_volume_geometry.keys():
-                print ("Reduced device updating " , k , v)
-                self.reconstructed_volume_geometry[k] = v
-        print ("Reduced Device: ",self.reconstructed_volume_geometry)
+            if k in reconstructed_volume_geometry.keys():
+                reconstructed_volume_geometry[k] = v
         
         vol_geom = [
-            self.reconstructed_volume_geometry['X'],
-            self.reconstructed_volume_geometry['Y'],
-            self.reconstructed_volume_geometry['Z']
+            reconstructed_volume_geometry['X'],
+            reconstructed_volume_geometry['Y'],
+            reconstructed_volume_geometry['Z']
             ]
         return AstraDevice(self.type, proj_geom, vol_geom)
         
-- 
cgit v1.2.3


From bbbecc64cf17704084a611dffbea12be420df2fb Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Wed, 1 Nov 2017 16:31:14 +0000
Subject: Little development

---
 src/Python/ccpi/reconstruction/FISTAReconstructor.py | 1 -
 1 file changed, 1 deletion(-)

diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
index 3c576c4..3317330 100644
--- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -760,7 +760,6 @@ class FISTAReconstructor():
                         
                         astra.matlab.data3d('delete', sino_id)
         
-                
                 if lambdaR_L1 > 0 :
                     ## RING REMOVAL
                     print ("ring removal")
-- 
cgit v1.2.3


From f258fe8548262a127c0ced979ad45c385d6abdd4 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Wed, 1 Nov 2017 16:32:08 +0000
Subject: Initial demo as Demo_RealData3D_Parallel.m

---
 src/Python/demo/demo_dendrites.py | 138 ++++++++++++++++++++++++++++++++++++++
 1 file changed, 138 insertions(+)
 create mode 100644 src/Python/demo/demo_dendrites.py

diff --git a/src/Python/demo/demo_dendrites.py b/src/Python/demo/demo_dendrites.py
new file mode 100644
index 0000000..528702c
--- /dev/null
+++ b/src/Python/demo/demo_dendrites.py
@@ -0,0 +1,138 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+Based on DemoRD2.m
+"""
+
+import h5py
+import numpy
+
+from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
+import astra
+import matplotlib.pyplot as plt
+from ccpi.imaging.Regularizer import Regularizer
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+
+def RMSE(signal1, signal2):
+    '''RMSE Root Mean Squared Error'''
+    if numpy.shape(signal1) == numpy.shape(signal2):
+        err = (signal1 - signal2)
+        err = numpy.sum( err * err )/numpy.size(signal1);  # MSE
+        err = sqrt(err);                                   # RMSE
+        return err
+    else:
+        raise Exception('Input signals must have the same shape')
+  
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32")
+Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
+angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32")
+recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
+size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
+slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+
+Z_slices = 20
+det_row_count = Z_slices
+# next definition is just for consistency of naming
+det_col_count = size_det
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+                                            detectorSpacingX,
+                                            detectorSpacingY,
+                                            det_row_count,
+                                            det_col_count,
+                                            angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+image_size_x = recon_size
+image_size_y = recon_size
+image_size_z = Z_slices
+vol_geom = astra.creators.create_vol_geom( image_size_x,
+                                           image_size_y,
+                                           image_size_z)
+
+
+## Create a Acquisition Device Model
+## Must specify some parameters of the acquisition:
+
+astradevice = AstraDevice(
+                DeviceModel.DeviceType.PARALLEL3D.value,
+                [det_row_count , det_col_count ,
+                 detectorSpacingX, detectorSpacingY ,
+                 angles_rad
+                 ],
+                [ image_size_x, image_size_y, image_size_z ] )
+
+fistaRecon = FISTAReconstructor(proj_geom,
+                            vol_geom,
+                            Sino3D ,
+                            weights=Weights3D,
+                            device=astradevice,
+                            Lipschitz_constant = 767893952.0,
+                            subsets = 8)
+
+print("Reconstruction using FISTA-OS-PWLS without regularization...")
+fistaRecon.setParameter(number_of_iterations = 18)
+
+### adjust the regularization parameter
+##lc = fistaRecon.getParameter('Lipschitz_constant')
+##fistaRecon.getParameter('regularizer')\
+##             .setParameter(regularization_parameter=5e6/lc)
+fistaRecon.use_device = True
+if False:
+    fistaRecon.prepareForIteration()
+    X = fistaRecon.iterate(numpy.load("../test/X.npy"))
+    numpy.save("FISTA-OS-PWLS.npy",X)
+
+## setup a regularizer algorithm
+regul = Regularizer(Regularizer.Algorithm.FGP_TV)
+regul.setParameter(regularization_parameter=5e6,
+                   number_of_iterations=50,
+                   tolerance_constant=1e-4,
+                   TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
+if False:
+    # adjust the regularization parameter
+    lc = fistaRecon.getParameter('Lipschitz_constant')
+    regul.setParameter(regularization_parameter=5e6/lc)
+    fistaRecon.setParameter(regularizer=regul)
+    fistaRecon.prepareForIteration()
+    X = fistaRecon.iterate(numpy.load("../test/X.npy"))
+    numpy.save("FISTA-OS-PWLS-TV.npy",X)
+
+if False:
+    # adjust the regularization parameter
+    lc = fistaRecon.getParameter('Lipschitz_constant')
+    regul.setParameter(regularization_parameter=5e6/lc)
+    fistaRecon.setParameter(regularizer=regul)
+    fistaRecon.setParameter(ring_lambda_R_L1=0.002, ring_alpha=21)
+    fistaRecon.prepareForIteration()
+    X = fistaRecon.iterate(numpy.load("../test/X.npy"))
+    numpy.save("FISTA-OS-GH-TV.npy",X)
+
+if True:
+    # adjust the regularization parameter
+    lc = fistaRecon.getParameter('Lipschitz_constant')
+    regul.setParameter(
+        algorithm=Regularizer.Algorithm.TGV_PD,
+        regularization_parameter=0.5/lc,
+        number_of_iterations=5)
+    fistaRecon.setParameter(regularizer=regul)
+    fistaRecon.setParameter(ring_lambda_R_L1=0.002, ring_alpha=21)
+    fistaRecon.prepareForIteration()
+    X = fistaRecon.iterate(numpy.load("../test/X.npy"))
+    numpy.save("FISTA-OS-GH-TGV.npy",X)
+    
-- 
cgit v1.2.3


From 523fdec99b19dc0a7c9d52cb89c122b101668e5f Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Thu, 2 Nov 2017 18:02:48 +0000
Subject: fixed non OS routine

---
 .../ccpi/reconstruction/FISTAReconstructor.py      | 69 +++++++++++++++++-----
 1 file changed, 53 insertions(+), 16 deletions(-)

diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
index 3317330..af6275f 100644
--- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -453,11 +453,13 @@ class FISTAReconstructor():
         X_t = X.copy()
         # convenience variable storage
         proj_geom , vol_geom, sino , \
-          SlicesZ , ring_lambda_R_L1 = self.getParameter([ 'projector_geometry' ,
+          SlicesZ , ring_lambda_R_L1 , weights = \
+                            self.getParameter([ 'projector_geometry' ,
                                                 'output_geometry',
                                                 'input_sinogram',
                                                 'SlicesZ' ,
-                                                'ring_lambda_R_L1'])
+                                                'ring_lambda_R_L1',
+                                                'weights'])
                    
         t = 1
 
@@ -510,13 +512,21 @@ class FISTAReconstructor():
             ## RING REMOVAL
             if ring_lambda_R_L1 != 0:
                 self.ringRemoval(i)
+            else:
+                self.residual = weights * (self.sino_updt - sino)
+                self.objective[i] = 0.5 * numpy.linalg.norm(self.residual)
+                #objective(i) = 0.5*norm(residual(:)); % for the objective function output
             ## Projection/Backprojection Routine
-            self.projectionBackprojection(X, X_t)
+            X, X_t = self.projectionBackprojection(X, X_t)
             
             ## REGULARIZATION
-            X = self.regularize(X)
+            Y = self.regularize(X)
+            X = Y.copy()
             ## Update Loop
             X , X_t, t = self.updateLoop(i, X, X_old, r_old, t, t_old)
+
+            print ("t" , t)
+            print ("X min {0} max {1}".format(X_t.min(),X_t.max()))
             self.setParameter(output_volume=X)
         return X
     ## iterate
@@ -601,10 +611,11 @@ class FISTAReconstructor():
 
         X = X_t - (1/L_const) * x_temp
         #astra.matlab.data3d('delete', sino_id)
+        return (X , X_t)
         
 
     def regularize(self, X , output_all=False):
-        print ("FISTA Reconstructor: regularize")
+        #print ("FISTA Reconstructor: regularize")
         
         regularizer = self.getParameter('regularizer')
         if regularizer is not None:
@@ -668,7 +679,8 @@ class FISTAReconstructor():
         # errors vector (if the ground truth is given)
         Resid_error = numpy.zeros((iterFISTA));
         # objective function values vector
-        objective = numpy.zeros((iterFISTA)); 
+        #objective = numpy.zeros((iterFISTA));
+        objective = self.objective
 
           
         t = 1
@@ -713,7 +725,7 @@ class FISTAReconstructor():
             angles = self.getParameter('projector_geometry')['ProjectionAngles']
 
             for ss in range(self.getParameter('subsets')):
-                print ("Subset {0}".format(ss))
+                #print ("Subset {0}".format(ss))
                 X_old = X.copy()
                 t_old = t
                 
@@ -723,10 +735,11 @@ class FISTAReconstructor():
                                  [counterInd:counterInd+numProjSub]
                 #print ("Len CurrSubIndices {0}".format(numProjSub))
                 mask = numpy.zeros(numpy.shape(angles), dtype=bool)
-                cc = 0
+                #cc = 0
                 for j in range(len(CurrSubIndices)):
                     mask[int(CurrSubIndices[j])] = True
                 proj_geomSUB['ProjectionAngles'] = angles[mask]
+                
                 if self.use_device:
                     device = self.getParameter('device_model')\
                              .createReducedDevice(
@@ -746,31 +759,33 @@ class FISTAReconstructor():
                         else:
                             sino_id, sinoT = astra.creators.create_sino3d_gpu (
                                 X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
-                            sino_updt_Sub[kkk] = sinoT.T.copy()
                             astra.matlab.data3d('delete', sino_id)
+                        sino_updt_Sub[kkk] = sinoT.T.copy()
                         
                 else:
                     # for 3D geometry (watch the GPU memory overflow in
                     # ASTRA < 1.8)
                     if self.use_device:
                         sino_updt_Sub = device.doForwardProject(X_t)
+                        
                     else:
                         sino_id, sino_updt_Sub = \
                              astra.creators.create_sino3d_gpu (X_t, proj_geomSUB, vol_geom)
                         
                         astra.matlab.data3d('delete', sino_id)
         
+                #print ("shape(sino_updt_Sub)",numpy.shape(sino_updt_Sub))
                 if lambdaR_L1 > 0 :
                     ## RING REMOVAL
-                    print ("ring removal")
-                    residualSub = \
+                    #print ("ring removal")
+                    residualSub , sino_updt_Sub, sino_updt_FULL = \
                         self.ringRemovalOrderedSubsets(ss,
                                                        counterInd,
                                                        sino_updt_Sub,
                                                        sino_updt_FULL)
                 else:
                     #PWLS model
-                    print ("PWLS model")
+                    #print ("PWLS model")
                     residualSub = weights[:,CurrSubIndices,:] * \
                                   ( sino_updt_Sub - \
                                     sino[:,CurrSubIndices,:].squeeze() )
@@ -804,13 +819,35 @@ class FISTAReconstructor():
                               residualSub, proj_geomSUB, vol_geom)
 
                         astra.matlab.data3d('delete', x_id)
+                
                 X = X_t - (1/L_const) * x_temp
+                
                 ## REGULARIZATION
                 X = self.regularize(X)
-            
+                
+                ## Update subset Loop
+                t = (1 + numpy.sqrt(1 + 4 * t**2))/2
+                X_t = X + (((t_old -1)/t) * (X - X_old))
             # FINAL
-            ## Update Loop
-            X , X_t, t = self.updateLoop(i, X, X_old, r_old, t, t_old)
+            ## update iteration loop
+            if lambdaR_L1 > 0:
+                self.r = numpy.max(
+                    numpy.abs(self.r) - lambdaR_L1 , 0) * \
+                    numpy.sign(self.r)
+                self.r_x = self.r + \
+                                 (((t_old-1)/t) * (self.r - r_old))
+
+            if self.getParameter('region_of_interest') is None:
+                string = 'Iteration Number {0} | Objective {1} \n'
+                print (string.format( i, self.objective[i]))
+            else:
+                ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+                                                        'ideal_image')
+                
+                Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+                string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+                print (string.format(i,Resid_error[i], self.objective[i]))    
+            print("X min {0} max {1}".format(X.min(),X.max()))
             self.setParameter(output_volume=X)
             counterInd = counterInd + numProjSub
 
@@ -840,6 +877,6 @@ class FISTAReconstructor():
             # filling the full sinogram
             sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze()
 
-        return residualSub
+        return (residualSub , sino_updt_Sub, sino_updt_FULL)
 
 
-- 
cgit v1.2.3


From 5ca31d867de64501badf346e206c716900a38d9e Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Thu, 2 Nov 2017 18:03:16 +0000
Subject: removed prints

---
 src/Python/ccpi/reconstruction/AstraDevice.py | 10 +---------
 1 file changed, 1 insertion(+), 9 deletions(-)

diff --git a/src/Python/ccpi/reconstruction/AstraDevice.py b/src/Python/ccpi/reconstruction/AstraDevice.py
index b403f69..57435f8 100644
--- a/src/Python/ccpi/reconstruction/AstraDevice.py
+++ b/src/Python/ccpi/reconstruction/AstraDevice.py
@@ -23,21 +23,13 @@ class AstraDevice(DeviceModel):
             self.acquisition_data_geometry['cameraY'],
             self.acquisition_data_geometry['angles'],
             )
-        print ("Astra device created:")
-        print ("Camera : {0}x{1}".format(self.proj_geom['DetectorColCount'],
-               self.proj_geom['DetectorRowCount']))
-        print ("number of projections " , len(self.proj_geom['ProjectionAngles']))
         
         self.vol_geom = astra.creators.create_vol_geom(
             self.reconstructed_volume_geometry['X'],
             self.reconstructed_volume_geometry['Y'],
             self.reconstructed_volume_geometry['Z']
             )
-        print ("Reconstruction volume:")
-        print ("[{0},{1},{2}]".format(self.vol_geom['GridColCount'],
-                                      self.vol_geom['GridRowCount'],
-                                      self.vol_geom['GridSliceCount']))
-
+        
     def doForwardProject(self, volume):
         '''Forward projects the volume according to the device geometry
 
-- 
cgit v1.2.3


From e5303410dc3e82a633c2a3ddbc535fdaa95cb671 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Thu, 2 Nov 2017 18:03:41 +0000
Subject: added demos

---
 src/Python/demo/demo_dendrites.py | 36 +++++++++++++++++++++++++++++++++---
 1 file changed, 33 insertions(+), 3 deletions(-)

diff --git a/src/Python/demo/demo_dendrites.py b/src/Python/demo/demo_dendrites.py
index 528702c..f5dc845 100644
--- a/src/Python/demo/demo_dendrites.py
+++ b/src/Python/demo/demo_dendrites.py
@@ -1,3 +1,4 @@
+
 # -*- coding: utf-8 -*-
 """
 Created on Wed Aug 23 16:34:49 2017
@@ -86,14 +87,14 @@ fistaRecon = FISTAReconstructor(proj_geom,
                             subsets = 8)
 
 print("Reconstruction using FISTA-OS-PWLS without regularization...")
-fistaRecon.setParameter(number_of_iterations = 18)
+fistaRecon.setParameter(number_of_iterations = 5)
 
 ### adjust the regularization parameter
 ##lc = fistaRecon.getParameter('Lipschitz_constant')
 ##fistaRecon.getParameter('regularizer')\
 ##             .setParameter(regularization_parameter=5e6/lc)
 fistaRecon.use_device = True
-if False:
+if True:
     fistaRecon.prepareForIteration()
     X = fistaRecon.iterate(numpy.load("../test/X.npy"))
     numpy.save("FISTA-OS-PWLS.npy",X)
@@ -123,7 +124,7 @@ if False:
     X = fistaRecon.iterate(numpy.load("../test/X.npy"))
     numpy.save("FISTA-OS-GH-TV.npy",X)
 
-if True:
+if False:
     # adjust the regularization parameter
     lc = fistaRecon.getParameter('Lipschitz_constant')
     regul.setParameter(
@@ -136,3 +137,32 @@ if True:
     X = fistaRecon.iterate(numpy.load("../test/X.npy"))
     numpy.save("FISTA-OS-GH-TGV.npy",X)
     
+if False:
+    # adjust the regularization parameter
+    lc = fistaRecon.getParameter('Lipschitz_constant')
+    regul.setParameter(
+        algorithm=Regularizer.Algorithm.PatchBased_Regul,
+        regularization_parameter=3/lc,
+        searching_window_ratio=3,
+        similarity_window_ratio=1,
+        PB_filtering_parameter=0.04
+        
+        )
+    fistaRecon.setParameter(regularizer=regul)
+    fistaRecon.setParameter(ring_lambda_R_L1=0.002, ring_alpha=21)
+    fistaRecon.prepareForIteration()
+    X = fistaRecon.iterate(numpy.load("../test/X.npy"))
+    numpy.save("FISTA-OS-CPU_PB.npy",X)
+
+if False:
+    fistaRecon = FISTAReconstructor(proj_geom,
+                            vol_geom,
+                            Sino3D ,
+                            weights=Weights3D,
+                            device=astradevice,
+                            Lipschitz_constant = 7.6792e8,
+                            number_of_iterations=50)
+
+    fistaRecon.prepareForIteration()
+    X = fistaRecon.iterate(numpy.load("../test/X.npy"))
+    numpy.save("FISTA.npy",X)
-- 
cgit v1.2.3


From 28f5ddb4538b0d37422821b9b9cfd9a9e8ae0fb1 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Fri, 10 Nov 2017 12:38:25 +0000
Subject: some development

---
 .../ccpi/reconstruction/FISTAReconstructor.py      |   2 +-
 src/Python/test/create_phantom_projections.py      |  49 +++
 src/Python/test/test_reconstructor-os_phantom.py   | 480 +++++++++++++++++++++
 3 files changed, 530 insertions(+), 1 deletion(-)
 create mode 100644 src/Python/test/create_phantom_projections.py
 create mode 100644 src/Python/test/test_reconstructor-os_phantom.py

diff --git a/src/Python/ccpi/reconstruction/FISTAReconstructor.py b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
index af6275f..e40ad24 100644
--- a/src/Python/ccpi/reconstruction/FISTAReconstructor.py
+++ b/src/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -233,7 +233,7 @@ class FISTAReconstructor():
             #x1 = rand(N,N,1);
             x1 = numpy.random.rand(1,N,N)
             #sqweight = sqrt(weights(:,:,1));
-            sqweight = numpy.sqrt(weights[0])
+            sqweight = numpy.sqrt(weights[0:1,:,:])
             proj_geomT = proj_geom.copy();
             proj_geomT['DetectorRowCount'] = 1;
             vol_geomT = vol_geom.copy();
diff --git a/src/Python/test/create_phantom_projections.py b/src/Python/test/create_phantom_projections.py
new file mode 100644
index 0000000..20a9278
--- /dev/null
+++ b/src/Python/test/create_phantom_projections.py
@@ -0,0 +1,49 @@
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+import h5py
+import numpy
+import matplotlib.pyplot as plt
+
+nx = h5py.File('phant3D_256.h5', "r")
+phantom = numpy.asarray(nx.get('/dataset1'))
+pX,pY,pZ = numpy.shape(phantom)
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nxa = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nxa['/'].keys()]
+print (entries)
+
+angles_rad = numpy.asarray(nxa.get('/angles_rad'), dtype="float32")
+
+
+device = AstraDevice(
+    DeviceModel.DeviceType.PARALLEL3D.value,
+    [ pX , pY , 1., 1., angles_rad],
+    [ pX, pY, pZ ] )
+
+
+proj = device.doForwardProject(phantom)
+stack = [proj[:,i,:] for i in range(len(angles_rad))]
+stack = numpy.asarray(stack)
+
+
+fig = plt.figure()
+a=fig.add_subplot(1,2,1)
+a.set_title('proj')
+imgplot = plt.imshow(proj[:,100,:])
+a=fig.add_subplot(1,2,2)
+a.set_title('stack')
+imgplot = plt.imshow(stack[100])
+plt.show()
+
+pf = h5py.File("phantom3D256_projections.h5" , "w")
+pf.create_dataset("/projections", data=stack)
+pf.create_dataset("/sinogram", data=proj)
+pf.create_dataset("/angles", data=angles_rad)
+pf.create_dataset("/reconstruction_volume" , data=numpy.asarray([pX, pY, pZ]))
+pf.create_dataset("/camera/size" , data=numpy.asarray([pX , pY ]))
+pf.create_dataset("/camera/spacing" , data=numpy.asarray([1.,1.]))
+pf.flush()
+pf.close()
diff --git a/src/Python/test/test_reconstructor-os_phantom.py b/src/Python/test/test_reconstructor-os_phantom.py
new file mode 100644
index 0000000..01f1354
--- /dev/null
+++ b/src/Python/test/test_reconstructor-os_phantom.py
@@ -0,0 +1,480 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+Based on DemoRD2.m
+"""
+
+import h5py
+import numpy
+
+from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
+import astra
+import matplotlib.pyplot as plt
+from ccpi.imaging.Regularizer import Regularizer
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+
+#from ccpi.viewer.CILViewer2D import *
+
+
+def RMSE(signal1, signal2):
+    '''RMSE Root Mean Squared Error'''
+    if numpy.shape(signal1) == numpy.shape(signal2):
+        err = (signal1 - signal2)
+        err = numpy.sum( err * err )/numpy.size(signal1);  # MSE
+        err = sqrt(err);                                   # RMSE
+        return err
+    else:
+        raise Exception('Input signals must have the same shape')
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/src/Python/test/phantom3D256_projections.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+projections = numpy.asarray(nx.get('/projections'), dtype="float32")
+#Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
+#angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles'), dtype="float32")
+angSize = numpy.size(angles_rad)
+image_size_x, image_size_y, image_size_z = \
+              numpy.asarray(nx.get('/reconstruction_volume'), dtype=int)
+det_col_count, det_row_count = \
+              numpy.asarray(nx.get('/camera/size'))
+#slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+detectorSpacingX, detectorSpacingY = numpy.asarray(nx.get('/camera/spacing'), dtype=int)
+
+Z_slices = 20
+#det_row_count = image_size_y
+# next definition is just for consistency of naming
+#det_col_count = image_size_x
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+                                            detectorSpacingX,
+                                            detectorSpacingY,
+                                            det_row_count,
+                                            det_col_count,
+                                            angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+##image_size_x = recon_size
+##image_size_y = recon_size
+##image_size_z = Z_slices
+vol_geom = astra.creators.create_vol_geom( image_size_x,
+                                           image_size_y,
+                                           image_size_z)
+
+## First pass the arguments to the FISTAReconstructor and test the
+## Lipschitz constant
+astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+                [proj_geom['DetectorRowCount'] ,
+                 proj_geom['DetectorColCount'] ,
+                 proj_geom['DetectorSpacingX'] ,
+                 proj_geom['DetectorSpacingY'] ,
+                 proj_geom['ProjectionAngles']
+                 ],
+                [
+                    vol_geom['GridColCount'],
+                    vol_geom['GridRowCount'], 
+                    vol_geom['GridSliceCount'] ] )
+## create the sinogram 
+Sino3D = numpy.transpose(projections, axes=[1,0,2])
+
+fistaRecon = FISTAReconstructor(proj_geom,
+                                vol_geom,
+                                Sino3D ,
+                                #weights=Weights3D,
+                                device=astradevice)
+
+print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+fistaRecon.setParameter(number_of_iterations = 4)
+#fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+fistaRecon.setParameter(ring_alpha = 21)
+fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+#fistaRecon.setParameter(ring_lambda_R_L1 = 0)
+subsets = 8
+fistaRecon.setParameter(subsets=subsets)
+
+
+#reg = Regularizer(Regularizer.Algorithm.FGP_TV)
+#reg.setParameter(regularization_parameter=0.005,
+#                          number_of_iterations=50)
+reg = Regularizer(Regularizer.Algorithm.FGP_TV)
+reg.setParameter(regularization_parameter=5e6,
+                          tolerance_constant=0.0001,
+                          number_of_iterations=50)
+
+#fistaRecon.setParameter(regularizer=reg)
+#lc = fistaRecon.getParameter('Lipschitz_constant')
+#reg.setParameter(regularization_parameter=5e6/lc)
+
+## Ordered subset
+if True:
+    #subsets = 8
+    fistaRecon.setParameter(subsets=subsets)
+    fistaRecon.createOrderedSubsets()
+else:
+    angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+    #binEdges = numpy.linspace(angles.min(),
+    #                          angles.max(),
+    #                          subsets + 1)
+    binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
+    # get rearranged subset indices
+    IndicesReorg = numpy.zeros((numpy.shape(angles)))
+    counterM = 0
+    for ii in range(binsDiscr.max()):
+        counter = 0
+        for jj in range(subsets):
+            curr_index = ii + jj  + counter
+            #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
+            if binsDiscr[jj] > ii:
+                if (counterM < numpy.size(IndicesReorg)):
+                    IndicesReorg[counterM] = curr_index
+                counterM = counterM + 1
+                
+            counter = counter + binsDiscr[jj] - 1
+
+
+if True:
+    print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+    print ("prepare for iteration")
+    fistaRecon.prepareForIteration()
+    
+    
+
+    print("initializing  ...")
+    if True:
+        # if X doesn't exist
+        #N = params.vol_geom.GridColCount
+        N = vol_geom['GridColCount']
+        print ("N " + str(N))
+        X = numpy.asarray(numpy.ones((image_size_x,image_size_y,image_size_z)),
+                        dtype=numpy.float) * 0.001
+        X = numpy.asarray(numpy.zeros((image_size_x,image_size_y,image_size_z)),
+                        dtype=numpy.float) 
+    else:
+        #X = fistaRecon.initialize()
+        X = numpy.load("X.npy")
+    
+    print (numpy.shape(X))
+    X_t = X.copy()
+    print ("initialized")
+    proj_geom , vol_geom, sino , \
+        SlicesZ, weights , alpha_ring = fistaRecon.getParameter(
+            ['projector_geometry' , 'output_geometry',
+             'input_sinogram', 'SlicesZ' ,  'weights', 'ring_alpha'])
+    lambdaR_L1 , alpha_ring , weights , L_const= \
+                       fistaRecon.getParameter(['ring_lambda_R_L1',
+                                               'ring_alpha' , 'weights',
+                                               'Lipschitz_constant'])
+
+    #fistaRecon.setParameter(number_of_iterations = 3)
+    iterFISTA = fistaRecon.getParameter('number_of_iterations')
+    # errors vector (if the ground truth is given)
+    Resid_error = numpy.zeros((iterFISTA));
+    # objective function values vector
+    objective = numpy.zeros((iterFISTA)); 
+
+      
+    t = 1
+    
+
+    ## additional for 
+    proj_geomSUB = proj_geom.copy()
+    fistaRecon.residual2 = numpy.zeros(numpy.shape(fistaRecon.pars['input_sinogram']))
+    residual2 = fistaRecon.residual2
+    sino_updt_FULL = fistaRecon.residual.copy()
+    r_x = fistaRecon.r.copy()
+
+    results = []
+    print ("starting iterations")
+##    % Outer FISTA iterations loop
+    for i in range(fistaRecon.getParameter('number_of_iterations')):
+##        % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required
+##        % one solution is to work with a full sinogram at times
+##        if ((i >= 3) && (lambdaR_L1 > 0))
+##            [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom);
+##            astra_mex_data3d('delete', sino_id2);
+##        end
+        # With OS approach it becomes trickier to correlate independent subsets,
+        # hence additional work is required one solution is to work with a full
+        # sinogram at times
+
+        
+        #t_old = t
+        SlicesZ, anglesNumb, Detectors = \
+                    numpy.shape(fistaRecon.getParameter('input_sinogram'))
+        ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
+        r_old = fistaRecon.r.copy()
+            
+        if (i > 1 and lambdaR_L1 > 0) :
+            for kkk in range(anglesNumb):
+                 
+                 residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+                                       ((sino_updt_FULL[:,kkk,:]).squeeze() - \
+                                        (sino[:,kkk,:]).squeeze() -\
+                                        (alpha_ring * r_x)
+                                        )
+            #r_old = fistaRecon.r.copy()
+            vec = fistaRecon.residual.sum(axis = 1)
+            #if SlicesZ > 1:
+            #    vec = vec[:,1,:] # 1 or 0?
+            r_x = fistaRecon.r_x
+            # update ring variable
+            fistaRecon.r = (r_x - (1./L_const) * vec)
+
+        # subset loop
+        counterInd = 1
+        geometry_type = fistaRecon.getParameter('projector_geometry')['type']
+        angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+    
+##        if geometry_type == 'parallel' or \
+##           geometry_type == 'fanflat' or \
+##           geometry_type == 'fanflat_vec' :
+##            
+##            for kkk in range(SlicesZ):
+##                sino_id, sinoT[kkk] = \
+##                         astra.creators.create_sino3d_gpu(
+##                             X_t[kkk:kkk+1], proj_geomSUB, vol_geom)
+##                sino_updt_Sub[kkk] = sinoT.T.copy()
+##                
+##        else:
+##            sino_id, sino_updt_Sub = \
+##                astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom)
+##        
+##        astra.matlab.data3d('delete', sino_id)
+  
+        for ss in range(fistaRecon.getParameter('subsets')):
+            print ("Subset {0}".format(ss))
+            X_old = X.copy()
+            t_old = t
+            print ("X[0][0][0] {0} t {1}".format(X[0][0][0], t))
+            
+            # the number of projections per subset
+            numProjSub = fistaRecon.getParameter('os_bins')[ss]
+            CurrSubIndices = fistaRecon.getParameter('os_indices')\
+                             [counterInd:counterInd+numProjSub]
+            shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram')))
+            shape[1] = numProjSub
+            sino_updt_Sub = numpy.zeros(shape)
+            
+            #print ("Len CurrSubIndices {0}".format(numProjSub))
+            mask = numpy.zeros(numpy.shape(angles), dtype=bool)
+            cc = 0
+            for j in range(len(CurrSubIndices)):
+                mask[int(CurrSubIndices[j])] = True
+
+            ## this is a reduced device
+            rdev = fistaRecon.getParameter('device_model')\
+                   .createReducedDevice(proj_par={'angles' : angles[mask]},
+                                        vol_par={})
+            proj_geomSUB['ProjectionAngles'] = angles[mask]
+
+            
+
+            if geometry_type == 'parallel' or \
+               geometry_type == 'fanflat' or \
+               geometry_type == 'fanflat_vec' :
+
+                for kkk in range(SlicesZ):
+                    sino_id, sinoT = astra.creators.create_sino3d_gpu (
+                        X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
+                    sino_updt_Sub[kkk] = sinoT.T.copy()
+                    astra.matlab.data3d('delete', sino_id)
+            else:
+                # for 3D geometry (watch the GPU memory overflow in ASTRA < 1.8)
+                sino_id, sino_updt_Sub = \
+                     astra.creators.create_sino3d_gpu (X_t,
+                                                       proj_geomSUB,
+                                                       vol_geom)
+                
+                astra.matlab.data3d('delete', sino_id)
+                
+            
+
+
+            ## RING REMOVAL
+            residual = fistaRecon.residual
+            
+            
+            if lambdaR_L1 > 0 :
+                 print ("ring removal")
+                 residualSub = numpy.zeros(shape)
+    ##             for a chosen subset
+    ##                for kkk = 1:numProjSub
+    ##                    indC = CurrSubIndeces(kkk);
+    ##                    residualSub(:,kkk,:) =  squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
+    ##                    sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram
+    ##                end
+                 for kkk in range(numProjSub):
+                     #print ("ring removal indC ... {0}".format(kkk))
+                     indC = int(CurrSubIndices[kkk])
+                     residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \
+                            (sino_updt_Sub[:,kkk,:].squeeze() - \
+                             sino[:,indC,:].squeeze() - alpha_ring * r_x)
+                     # filling the full sinogram
+                     sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze()
+
+            else:
+                #PWLS model
+                # I guess we need to use mask here instead
+                residualSub = weights[:,CurrSubIndices,:] * \
+                              ( sino_updt_Sub - \
+                                sino[:,CurrSubIndices,:].squeeze() )
+            # it seems that in the original code the following like is not
+            # calculated in the case of ring removal
+            objective[i] = 0.5 * numpy.linalg.norm(residualSub)
+
+            #backprojection
+            if geometry_type == 'parallel' or \
+               geometry_type == 'fanflat' or \
+               geometry_type == 'fanflat_vec' :
+                # if geometry is 2D use slice-by-slice projection-backprojection
+                # routine
+                x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32)
+                for kkk in range(SlicesZ):
+                    
+                    x_id, x_temp[kkk] = \
+                             astra.creators.create_backprojection3d_gpu(
+                                 residualSub[kkk:kkk+1],
+                                 proj_geomSUB, vol_geom)
+                    astra.matlab.data3d('delete', x_id)
+                    
+            else:
+                x_id, x_temp = \
+                      astra.creators.create_backprojection3d_gpu(
+                          residualSub, proj_geomSUB, vol_geom)
+
+                astra.matlab.data3d('delete', x_id)
+                
+            X = X_t - (1/L_const) * x_temp
+
+        
+
+            ## REGULARIZATION
+            ## SKIPPING FOR NOW
+            ## Should be simpli
+            # regularizer = fistaRecon.getParameter('regularizer')
+            # for slices:
+            # out = regularizer(input=X)
+            print ("regularizer")
+            reg = fistaRecon.getParameter('regularizer')
+
+            if reg is not None:
+                X = reg(input=X,
+                        output_all=False)
+
+            t = (1 + numpy.sqrt(1 + 4 * t **2))/2
+            X_t = X + (((t_old -1)/t) * (X-X_old))
+            counterInd = counterInd + numProjSub - 1
+        if i == 1:
+            r_old = fistaRecon.r.copy()
+            
+        ## FINAL
+        print ("final")
+        lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
+        if lambdaR_L1 > 0:
+            fistaRecon.r = numpy.max(
+                numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
+                numpy.sign(fistaRecon.r)
+            # updating r
+            r_x = fistaRecon.r + ((t_old-1)/t) * (fistaRecon.r - r_old)
+        
+
+        if fistaRecon.getParameter('region_of_interest') is None:
+            string = 'Iteration Number {0} | Objective {1} \n'
+            print (string.format( i, objective[i]))
+        else:
+            ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+                                                    'ideal_image')
+            
+            Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+            string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+            print (string.format(i,Resid_error[i], objective[i]))
+
+        results.append(X[10])
+    numpy.save("X_out_os.npy", X)
+
+else:
+    
+    
+    
+    astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+                [proj_geom['DetectorRowCount'] ,
+                 proj_geom['DetectorColCount'] ,
+                 proj_geom['DetectorSpacingX'] ,
+                 proj_geom['DetectorSpacingY'] ,
+                 proj_geom['ProjectionAngles']
+                 ],
+                [
+                    vol_geom['GridColCount'],
+                    vol_geom['GridRowCount'], 
+                    vol_geom['GridSliceCount'] ] )
+    regul = Regularizer(Regularizer.Algorithm.FGP_TV)
+    regul.setParameter(regularization_parameter=5e6,
+                       number_of_iterations=50,
+                       tolerance_constant=1e-4,
+                       TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
+
+    fistaRecon = FISTAReconstructor(proj_geom,
+                                vol_geom,
+                                Sino3D ,
+                                weights=Weights3D,
+                                device=astradevice,
+                                #regularizer = regul,
+                                subsets=8)
+
+    print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+    fistaRecon.setParameter(number_of_iterations = 1)
+    fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+    fistaRecon.setParameter(ring_alpha = 21)
+    fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+    #fistaRecon.setParameter(subsets=8)
+    
+    #lc = fistaRecon.getParameter('Lipschitz_constant')
+    #fistaRecon.getParameter('regularizer').setParameter(regularization_parameter=5e6/lc)
+    
+    fistaRecon.prepareForIteration()
+    X = fistaRecon.iterate(numpy.load("X.npy"))
+    
+
+# plot
+fig = plt.figure()
+cols = 3
+
+## add the difference
+rd = []
+for i in range(1,len(results)):
+    rd.append(results[i-1])
+    rd.append(results[i])
+    rd.append(results[i] - results[i-1])
+
+rows = (lambda x: int(numpy.floor(x/cols) + 1) if x%cols != 0  else int(x/cols)) \
+       (len (rd))
+for i in range(len (results)):
+    a=fig.add_subplot(rows,cols,i+1)
+    imgplot = plt.imshow(results[i], vmin=0, vmax=1)
+    a.text(0.05, 0.95, "iteration {0}".format(i),
+               verticalalignment='top')
+##    i = i + 1
+##    a=fig.add_subplot(rows,cols,i+1)
+##    imgplot = plt.imshow(results[i], vmin=0, vmax=10)
+##    a.text(0.05, 0.95, "iteration {0}".format(i),
+##               verticalalignment='top')
+    
+##    a=fig.add_subplot(rows,cols,i+2)
+##    imgplot = plt.imshow(results[i]-results[i-1], vmin=0, vmax=10)
+##    a.text(0.05, 0.95, "difference {0}-{1}".format(i, i-1),
+##               verticalalignment='top')
+        
+        
+
+plt.show()
-- 
cgit v1.2.3


From 4b74129efead9b8af67f92c3c67a0d9e2b18cdf4 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Fri, 10 Nov 2017 14:03:37 +0000
Subject: code refactoring step1

---
 CMake/FindAnacondaEnvironment.cmake                |  154 +++
 CMakeLists.txt                                     |    6 +-
 Core/CCPiDefines.h                                 |   35 +
 Core/CMakeLists.txt                                |   25 +
 Core/recipe/bld.bat                                |   12 +
 Core/recipe/build.sh                               |   17 +
 Core/recipe/meta.yaml                              |   22 +
 Core/regularizers_CPU/FGP_TV.c                     |  216 ++++
 Core/regularizers_CPU/FGP_TV_core.c                |  266 +++++
 Core/regularizers_CPU/FGP_TV_core.h                |   71 ++
 Core/regularizers_CPU/LLT_model.c                  |  169 ++++
 Core/regularizers_CPU/LLT_model_core.c             |  318 ++++++
 Core/regularizers_CPU/LLT_model_core.h             |   46 +
 Core/regularizers_CPU/PatchBased_Regul.c           |  140 +++
 Core/regularizers_CPU/PatchBased_Regul_core.c      |  232 +++++
 Core/regularizers_CPU/PatchBased_Regul_core.h      |   69 ++
 Core/regularizers_CPU/SplitBregman_TV.c            |  179 ++++
 Core/regularizers_CPU/SplitBregman_TV_core.c       |  259 +++++
 Core/regularizers_CPU/SplitBregman_TV_core.h       |   69 ++
 Core/regularizers_CPU/TGV_PD.c                     |  144 +++
 Core/regularizers_CPU/TGV_PD_core.c                |  208 ++++
 Core/regularizers_CPU/TGV_PD_core.h                |   67 ++
 Core/regularizers_CPU/utils.c                      |   29 +
 Core/regularizers_CPU/utils.h                      |   32 +
 .../Diffus_HO/Diff4thHajiaboli_GPU.cpp             |  114 +++
 .../Diffus_HO/Diff4th_GPU_kernel.cu                |  270 +++++
 .../Diffus_HO/Diff4th_GPU_kernel.h                 |    6 +
 Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp         |  171 ++++
 Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu   |  239 +++++
 Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h    |    6 +
 Core/test/test_regularizer.cpp                     |    3 +
 Core/test/test_regularizer.h                       |    0
 Wrappers/CMakeLists.txt                            |   14 +
 Wrappers/Matlab/FISTA_REC.m                        |  704 +++++++++++++
 Wrappers/Matlab/compile_mex.m                      |   11 +
 Wrappers/Matlab/studentst.m                        |   47 +
 Wrappers/Python/CMakeLists.txt                     |  183 ++++
 Wrappers/Python/FindAnacondaEnvironment.cmake      |  154 +++
 Wrappers/Python/ccpi/reconstruction/AstraDevice.py |   95 ++
 Wrappers/Python/ccpi/reconstruction/DeviceModel.py |   63 ++
 .../ccpi/reconstruction/FISTAReconstructor.py      |  882 +++++++++++++++++
 .../Python/ccpi/reconstruction/Reconstructor.py    |  598 +++++++++++
 Wrappers/Python/compile-fista.bat.in               |    7 +
 Wrappers/Python/compile-fista.sh.in                |    9 +
 Wrappers/Python/compile.bat.in                     |    7 +
 Wrappers/Python/compile.sh.in                      |    9 +
 Wrappers/Python/conda-recipe/bld.bat               |   14 +
 Wrappers/Python/conda-recipe/build.sh              |   14 +
 Wrappers/Python/conda-recipe/meta.yaml             |   30 +
 Wrappers/Python/fista-recipe/bld.bat               |   11 +
 Wrappers/Python/fista-recipe/build.sh              |   10 +
 Wrappers/Python/fista-recipe/meta.yaml             |   29 +
 Wrappers/Python/fista_module.cpp                   | 1047 ++++++++++++++++++++
 Wrappers/Python/setup-fista.py.in                  |   27 +
 Wrappers/Python/setup.py.in                        |   69 ++
 Wrappers/Python/test/astra_test.py                 |   85 ++
 Wrappers/Python/test/create_phantom_projections.py |   49 +
 Wrappers/Python/test/readhd5.py                    |   42 +
 Wrappers/Python/test/simple_astra_test.py          |   25 +
 .../Python/test/test_reconstructor-os_phantom.py   |  480 +++++++++
 Wrappers/Python/test/test_reconstructor.py         |  359 +++++++
 Wrappers/Python/test/test_regularizers.py          |  412 ++++++++
 Wrappers/Python/test/test_regularizers_3d.py       |  425 ++++++++
 Wrappers/Python/test/view_result.py                |   12 +
 64 files changed, 9516 insertions(+), 1 deletion(-)
 create mode 100644 CMake/FindAnacondaEnvironment.cmake
 create mode 100644 Core/CCPiDefines.h
 create mode 100644 Core/CMakeLists.txt
 create mode 100644 Core/recipe/bld.bat
 create mode 100644 Core/recipe/build.sh
 create mode 100644 Core/recipe/meta.yaml
 create mode 100644 Core/regularizers_CPU/FGP_TV.c
 create mode 100644 Core/regularizers_CPU/FGP_TV_core.c
 create mode 100644 Core/regularizers_CPU/FGP_TV_core.h
 create mode 100644 Core/regularizers_CPU/LLT_model.c
 create mode 100644 Core/regularizers_CPU/LLT_model_core.c
 create mode 100644 Core/regularizers_CPU/LLT_model_core.h
 create mode 100644 Core/regularizers_CPU/PatchBased_Regul.c
 create mode 100644 Core/regularizers_CPU/PatchBased_Regul_core.c
 create mode 100644 Core/regularizers_CPU/PatchBased_Regul_core.h
 create mode 100644 Core/regularizers_CPU/SplitBregman_TV.c
 create mode 100644 Core/regularizers_CPU/SplitBregman_TV_core.c
 create mode 100644 Core/regularizers_CPU/SplitBregman_TV_core.h
 create mode 100644 Core/regularizers_CPU/TGV_PD.c
 create mode 100644 Core/regularizers_CPU/TGV_PD_core.c
 create mode 100644 Core/regularizers_CPU/TGV_PD_core.h
 create mode 100644 Core/regularizers_CPU/utils.c
 create mode 100644 Core/regularizers_CPU/utils.h
 create mode 100644 Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
 create mode 100644 Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
 create mode 100644 Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
 create mode 100644 Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp
 create mode 100644 Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
 create mode 100644 Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
 create mode 100644 Core/test/test_regularizer.cpp
 create mode 100644 Core/test/test_regularizer.h
 create mode 100644 Wrappers/CMakeLists.txt
 create mode 100644 Wrappers/Matlab/FISTA_REC.m
 create mode 100644 Wrappers/Matlab/compile_mex.m
 create mode 100644 Wrappers/Matlab/studentst.m
 create mode 100644 Wrappers/Python/CMakeLists.txt
 create mode 100644 Wrappers/Python/FindAnacondaEnvironment.cmake
 create mode 100644 Wrappers/Python/ccpi/reconstruction/AstraDevice.py
 create mode 100644 Wrappers/Python/ccpi/reconstruction/DeviceModel.py
 create mode 100644 Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py
 create mode 100644 Wrappers/Python/ccpi/reconstruction/Reconstructor.py
 create mode 100644 Wrappers/Python/compile-fista.bat.in
 create mode 100644 Wrappers/Python/compile-fista.sh.in
 create mode 100644 Wrappers/Python/compile.bat.in
 create mode 100644 Wrappers/Python/compile.sh.in
 create mode 100644 Wrappers/Python/conda-recipe/bld.bat
 create mode 100644 Wrappers/Python/conda-recipe/build.sh
 create mode 100644 Wrappers/Python/conda-recipe/meta.yaml
 create mode 100644 Wrappers/Python/fista-recipe/bld.bat
 create mode 100644 Wrappers/Python/fista-recipe/build.sh
 create mode 100644 Wrappers/Python/fista-recipe/meta.yaml
 create mode 100644 Wrappers/Python/fista_module.cpp
 create mode 100644 Wrappers/Python/setup-fista.py.in
 create mode 100644 Wrappers/Python/setup.py.in
 create mode 100644 Wrappers/Python/test/astra_test.py
 create mode 100644 Wrappers/Python/test/create_phantom_projections.py
 create mode 100644 Wrappers/Python/test/readhd5.py
 create mode 100644 Wrappers/Python/test/simple_astra_test.py
 create mode 100644 Wrappers/Python/test/test_reconstructor-os_phantom.py
 create mode 100644 Wrappers/Python/test/test_reconstructor.py
 create mode 100644 Wrappers/Python/test/test_regularizers.py
 create mode 100644 Wrappers/Python/test/test_regularizers_3d.py
 create mode 100644 Wrappers/Python/test/view_result.py

diff --git a/CMake/FindAnacondaEnvironment.cmake b/CMake/FindAnacondaEnvironment.cmake
new file mode 100644
index 0000000..6475128
--- /dev/null
+++ b/CMake/FindAnacondaEnvironment.cmake
@@ -0,0 +1,154 @@
+#   Copyright 2017 Edoardo Pasca
+#
+#   Licensed under the Apache License, Version 2.0 (the "License");
+#   you may not use this file except in compliance with the License.
+#   You may obtain a copy of the License at
+#
+#       http://www.apache.org/licenses/LICENSE-2.0
+#
+#   Unless required by applicable law or agreed to in writing, software
+#   distributed under the License is distributed on an "AS IS" BASIS,
+#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#   See the License for the specific language governing permissions and
+#   limitations under the License.
+
+# #.rst:
+# FindAnacondaEnvironment
+# --------------
+#
+# Find Python executable and library for a specific Anaconda environment
+#
+# This module finds the Python interpreter for a specific Anaconda enviroment, 
+# if installed and determines where the include files and libraries are.  
+# This code sets the following variables:
+#
+# ::
+#   PYTHONINTERP_FOUND         - if the Python interpret has been found
+#   PYTHON_EXECUTABLE          - the Python interpret found
+#   PYTHON_LIBRARY             - path to the python library
+#   PYTHON_INCLUDE_PATH        - path to where Python.h is found (deprecated)
+#   PYTHON_INCLUDE_DIRS        - path to where Python.h is found
+#   PYTHONLIBS_VERSION_STRING  - version of the Python libs found (since CMake 2.8.8)
+#   PYTHON_VERSION_MAJOR       - major Python version
+#   PYTHON_VERSION_MINOR       - minor Python version
+#   PYTHON_VERSION_PATCH       - patch Python version
+
+
+
+function (findPythonForAnacondaEnvironment env)
+	if (WIN32)
+	  file(TO_CMAKE_PATH ${env}/python.exe PYTHON_EXECUTABLE)
+        elseif (UNIX)
+  	  file(TO_CMAKE_PATH ${env}/bin/python PYTHON_EXECUTABLE)
+	endif()
+
+	
+	message("findPythonForAnacondaEnvironment Found Python Executable" ${PYTHON_EXECUTABLE})
+	####### FROM FindPythonInterpr ########
+	# determine python version string
+	if(PYTHON_EXECUTABLE)
+		execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c
+								"import sys; sys.stdout.write(';'.join([str(x) for x in sys.version_info[:3]]))"
+						OUTPUT_VARIABLE _VERSION
+						RESULT_VARIABLE _PYTHON_VERSION_RESULT
+						ERROR_QUIET)
+		if(NOT _PYTHON_VERSION_RESULT)
+			string(REPLACE ";" "." _PYTHON_VERSION_STRING "${_VERSION}")
+			list(GET _VERSION 0 _PYTHON_VERSION_MAJOR)
+			list(GET _VERSION 1 _PYTHON_VERSION_MINOR)
+			list(GET _VERSION 2 _PYTHON_VERSION_PATCH)
+			if(PYTHON_VERSION_PATCH EQUAL 0)
+				# it's called "Python 2.7", not "2.7.0"
+				string(REGEX REPLACE "\\.0$" "" _PYTHON_VERSION_STRING "${PYTHON_VERSION_STRING}")
+			endif()
+		else()
+			# sys.version predates sys.version_info, so use that
+			execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c "import sys; sys.stdout.write(sys.version)"
+							OUTPUT_VARIABLE _VERSION
+							RESULT_VARIABLE _PYTHON_VERSION_RESULT
+							ERROR_QUIET)
+			if(NOT _PYTHON_VERSION_RESULT)
+				string(REGEX REPLACE " .*" "" _PYTHON_VERSION_STRING "${_VERSION}")
+				string(REGEX REPLACE "^([0-9]+)\\.[0-9]+.*" "\\1" _PYTHON_VERSION_MAJOR "${PYTHON_VERSION_STRING}")
+				string(REGEX REPLACE "^[0-9]+\\.([0-9])+.*" "\\1" _PYTHON_VERSION_MINOR "${PYTHON_VERSION_STRING}")
+				if(PYTHON_VERSION_STRING MATCHES "^[0-9]+\\.[0-9]+\\.([0-9]+)")
+					set(PYTHON_VERSION_PATCH "${CMAKE_MATCH_1}")
+				else()
+					set(PYTHON_VERSION_PATCH "0")
+				endif()
+			else()
+				# sys.version was first documented for Python 1.5, so assume
+				# this is older.
+				set(PYTHON_VERSION_STRING "1.4" PARENT_SCOPE)
+				set(PYTHON_VERSION_MAJOR "1" PARENT_SCOPE)
+				set(PYTHON_VERSION_MINOR "4" PARENT_SCOPE)
+				set(PYTHON_VERSION_PATCH "0" PARENT_SCOPE)
+			endif()
+		endif()
+		unset(_PYTHON_VERSION_RESULT)
+		unset(_VERSION)
+	endif()
+	###############################################
+	
+	set (PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} PARENT_SCOPE)
+	set (PYTHONINTERP_FOUND "ON" PARENT_SCOPE)
+	set (PYTHON_VERSION_STRING ${_PYTHON_VERSION_STRING} PARENT_SCOPE)
+	set (PYTHON_VERSION_MAJOR ${_PYTHON_VERSION_MAJOR} PARENT_SCOPE)
+	set (PYTHON_VERSION_MINOR ${_PYTHON_VERSION_MINOR} PARENT_SCOPE)
+	set (PYTHON_VERSION_PATCH ${_PYTHON_VERSION_PATCH} PARENT_SCOPE)
+	message("My version found " ${PYTHON_VERSION_STRING})
+	## find conda executable
+	if (WIN32)
+	  set (CONDA_EXECUTABLE ${env}/Script/conda PARENT_SCOPE)
+	elseif(UNIX)
+	  set (CONDA_EXECUTABLE ${env}/bin/conda PARENT_SCOPE)
+	endif()
+endfunction()
+
+
+
+set(Python_ADDITIONAL_VERSIONS 3.5)
+
+find_package(PythonInterp)
+if (PYTHONINTERP_FOUND)
+  
+  message("Found interpret " ${PYTHON_EXECUTABLE})
+  message("Python Library " ${PYTHON_LIBRARY})
+  message("Python Include Dir " ${PYTHON_INCLUDE_DIR})
+  message("Python Include Path " ${PYTHON_INCLUDE_PATH})
+  
+  foreach(pv ${PYTHON_VERSION_STRING})
+    message("Found interpret " ${pv})
+  endforeach()
+endif()
+
+
+
+find_package(PythonLibs)
+if (PYTHONLIB_FOUND) 
+  message("Found PythonLibs PYTHON_LIBRARIES " ${PYTHON_LIBRARIES})
+  message("Found PythonLibs PYTHON_INCLUDE_PATH " ${PYTHON_INCLUDE_PATH})
+  message("Found PythonLibs PYTHON_INCLUDE_DIRS " ${PYTHON_INCLUDE_DIRS})
+  message("Found PythonLibs PYTHONLIBS_VERSION_STRING " ${PYTHONLIBS_VERSION_STRING}  )
+else()
+  message("No PythonLibs Found")  
+endif()
+
+
+
+
+function(findPythonPackagesPath)
+   execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import *; print (get_python_lib())"
+                      RESULT_VARIABLE PYTHON_CVPY_PROCESS
+                      OUTPUT_VARIABLE PYTHON_STD_PACKAGES_PATH
+                      OUTPUT_STRIP_TRAILING_WHITESPACE)
+   #message("STD_PACKAGES " ${PYTHON_STD_PACKAGES_PATH})
+   if("${PYTHON_STD_PACKAGES_PATH}" MATCHES "site-packages")
+        set(_PYTHON_PACKAGES_PATH "python${PYTHON_VERSION_MAJOR_MINOR}/site-packages")
+   endif()
+
+    SET(PYTHON_PACKAGES_PATH "${PYTHON_STD_PACKAGES_PATH}" PARENT_SCOPE)
+
+endfunction()
+
+
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 4cfad7e..4b2aca9 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -27,4 +27,8 @@ set (CIL_VERSION_PATCH 1)
 
 set (CIL_VERSION '${CIL_VERSION_MAJOR}.${CIL_VERSION_MINOR}.${CIL_VERSION_PATCH}' CACHE INTERNAL "Core Imaging Library version" FORCE)
 
-add_subdirectory(src)
+# set the Python variables for the Conda environment
+include(${CMAKE_SOURCE_DIR}/CMake/FindAnacondaEnvironment.cmake)
+
+add_subdirectory(Core)
+add_subdirectory(Wrappers)
diff --git a/Core/CCPiDefines.h b/Core/CCPiDefines.h
new file mode 100644
index 0000000..c6ddc7d
--- /dev/null
+++ b/Core/CCPiDefines.h
@@ -0,0 +1,35 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+#ifndef CCPIDEFINES_H
+#define CCPIDEFINES_H
+
+#if defined(_WIN32) || defined(__WIN32__)
+  #if defined(CCPiCore_EXPORTS) || defined(CCPiNexusWidget_EXPORTS) || defined(ContourTreeSegmentation_EXPORTS) || defined(ContourTree_EXPORTS)// add by CMake 
+    #define  CCPI_EXPORT __declspec(dllexport)
+    #define EXPIMP_TEMPLATE
+  #else
+    #define  CCPI_EXPORT __declspec(dllimport)
+    #define EXPIMP_TEMPLATE extern
+  #endif /* CCPi_EXPORTS */
+#elif defined(linux) || defined(__linux) || defined(__APPLE__)
+ #define CCPI_EXPORT
+#endif
+
+#endif
diff --git a/Core/CMakeLists.txt b/Core/CMakeLists.txt
new file mode 100644
index 0000000..146b6a0
--- /dev/null
+++ b/Core/CMakeLists.txt
@@ -0,0 +1,25 @@
+#   Copyright 2017 Edoardo Pasca
+cmake_minimum_required (VERSION 3.0)
+
+project(regularizers)
+
+## Build the regularizers package as a library
+message("Adding regularizers as shared library")
+set(CMAKE_C_FLAGS "-fopenmp -O2 -funsigned-char -Wall -std=c++0x")
+#set(CMAKE_C_COMPILER /apps/pgi/linux86-64/17.4/bin/pgcc)
+#set(CMAKE_C_FLAGS "-acc -Minfo -ta=tesla:cc20 -openmp")
+#set(CMAKE_C_FLAGS "-acc -Minfo -ta=multicore -openmp -fPIC")
+add_library(regularizers_lib SHARED
+	    ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/FGP_TV_core.c
+	    ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/LLT_model_core.c
+	    ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/PatchBased_Regul_core.c
+	    ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/SplitBregman_TV_core.c
+	    ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/TGV_PD_core.c
+	    ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/utils.c
+	    )
+#GENERATE_EXPORT_HEADER(regularizers_lib)
+install (TARGETS regularizers_lib DESTINATION $ENV{PREFIX}/lib)
+
+add_executable(regularizer_test ${CMAKE_CURRENT_SOURCE_DIR}/test/test_regularizer.cpp)
+
+target_link_libraries (regularizer_test LINK_PUBLIC regularizers_lib)
\ No newline at end of file
diff --git a/Core/recipe/bld.bat b/Core/recipe/bld.bat
new file mode 100644
index 0000000..1b97893
--- /dev/null
+++ b/Core/recipe/bld.bat
@@ -0,0 +1,12 @@
+IF NOT DEFINED CIL_VERSION (
+ECHO CIL_VERSION Not Defined.
+exit 1
+)
+
+mkdir "%SRC_DIR%\build"
+
+cd %SRC_DIR%\build
+
+BUILD_CONFIG=Release
+
+cmake .. -Wno-dev -DCMAKE_BUILD_TYPE=$BUILD_CONFIG -DCMAKE_PREFIX_PATH:PATH="${PREFIX}" -DCMAKE_INSTALL_PREFIX:PATH="${PREFIX}" -DCMAKE_INSTALL_RPATH:PATH="${PREFIX}/lib"
diff --git a/Core/recipe/build.sh b/Core/recipe/build.sh
new file mode 100644
index 0000000..ab5474b
--- /dev/null
+++ b/Core/recipe/build.sh
@@ -0,0 +1,17 @@
+#!/usr/bin/env bash
+
+mkdir build
+cd build
+
+#configure
+BUILD_CONFIG=Release
+echo `pwd`
+cmake .. -G "Ninja" \
+      -Wno-dev \
+      -DCMAKE_BUILD_TYPE=$BUILD_CONFIG \
+      -DCMAKE_PREFIX_PATH:PATH="${PREFIX}" \
+      -DCMAKE_INSTALL_PREFIX:PATH="${PREFIX}" \
+      -DCMAKE_INSTALL_RPATH:PATH="${PREFIX}/lib"
+
+# compile & install
+ninja install
diff --git a/Core/recipe/meta.yaml b/Core/recipe/meta.yaml
new file mode 100644
index 0000000..1fca6bf
--- /dev/null
+++ b/Core/recipe/meta.yaml
@@ -0,0 +1,22 @@
+package:
+  name: regularizer
+  version: {{ environ['CIL_VERSION'] }}
+
+source:
+  path: ../
+
+build:
+  preserve_egg_dir: False
+  script_env: 
+    - CIL_VERSION
+
+requirements: 
+  build:
+    - toolchain
+    - cmake
+    - ninja
+
+about:
+  home: http://www.ccpi.ac.uk
+  license: Apache v2.0
+  summary: Regularizer package from CCPi
diff --git a/Core/regularizers_CPU/FGP_TV.c b/Core/regularizers_CPU/FGP_TV.c
new file mode 100644
index 0000000..30cea1a
--- /dev/null
+++ b/Core/regularizers_CPU/FGP_TV.c
@@ -0,0 +1,216 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+#include "matrix.h"
+#include "mex.h"
+#include "FGP_TV_core.h"
+
+/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume [REQUIRED]
+ * 2. lambda - regularization parameter [REQUIRED]
+ * 3. Number of iterations [OPTIONAL parameter]
+ * 4. eplsilon: tolerance constant [OPTIONAL parameter]
+ * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+ *
+ * Output:
+ * [1] Filtered/regularized image
+ * [2] last function value 
+ *
+ * Example of image denoising:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+ * u0 = Im + .05*randn(size(Im)); % adding noise
+ * u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+ *
+ * to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+ * This function is based on the Matlab's code and paper by
+ * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+ *
+ * D. Kazantsev, 2016-17
+ *
+ */
+
+
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[])
+        
+{
+    int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
+    const int  *dim_array;
+    float *A, *D=NULL, *D_old=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_old=NULL, *P2_old=NULL, *P3_old=NULL, *R1=NULL, *R2=NULL, *R3=NULL, lambda, tk, tkp1, re, re1, re_old, epsil;
+    
+    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+    dim_array = mxGetDimensions(prhs[0]);
+    
+    /*Handling Matlab input data*/
+    if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
+    
+    A  = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+    lambda =  (float) mxGetScalar(prhs[1]); /* regularization parameter */
+    iter = 50; /* default iterations number */
+    epsil = 0.0001; /* default tolerance constant */
+    methTV = 0;  /* default isotropic TV penalty */
+    
+    if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5))  iter = (int) mxGetScalar(prhs[2]); /* iterations number */
+    if ((nrhs == 4) || (nrhs == 5))  epsil =  (float) mxGetScalar(prhs[3]); /* tolerance constant */
+    if (nrhs == 5)  {
+        char *penalty_type;
+        penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+        if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+        if (strcmp(penalty_type, "l1") == 0)  methTV = 1;  /* enable 'l1' penalty */
+        mxFree(penalty_type);
+    }
+    /*output function value (last iteration) */
+    plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);  
+    float *funcvalA = (float *) mxGetData(plhs[1]);
+        
+    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+    
+    /*Handling Matlab output data*/
+    dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+    
+    tk = 1.0f;
+    tkp1=1.0f;
+    count = 0;
+    re_old = 0.0f;
+    
+    if (number_of_dims == 2) {
+        dimZ = 1; /*2D case*/
+        D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        
+        /* begin iterations */
+        for(ll=0; ll<iter; ll++) {
+            
+            /* computing the gradient of the objective function */
+            Obj_func2D(A, D, R1, R2, lambda, dimX, dimY);
+            
+            /*Taking a step towards minus of the gradient*/
+            Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY);
+            
+            /* projection step */
+            Proj_func2D(P1, P2, methTV, dimX, dimY);
+            
+            /*updating R and t*/
+            tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
+            Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY);                
+            
+            /* calculate norm */
+            re = 0.0f; re1 = 0.0f;
+            for(j=0; j<dimX*dimY*dimZ; j++)
+            {
+                re += pow(D[j] - D_old[j],2);
+                re1 += pow(D[j],2);
+            }
+            re = sqrt(re)/sqrt(re1);
+            if (re < epsil)  count++;
+            if (count > 4) {
+                Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY); 
+                break; }
+            
+            /* check that the residual norm is decreasing */
+            if (ll > 2) {
+                if (re > re_old) {
+                    Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);                                   
+                    break; }}            
+            re_old = re;
+            /*printf("%f %i %i \n", re, ll, count); */                      
+          
+            /*storing old values*/
+            copyIm(D, D_old, dimX, dimY, dimZ);
+            copyIm(P1, P1_old, dimX, dimY, dimZ);
+            copyIm(P2, P2_old, dimX, dimY, dimZ);
+            tk = tkp1;
+            
+            /* calculating the objective function value */
+            if (ll == (iter-1)) Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);            
+        }
+        printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
+    }
+    if (number_of_dims == 3) {
+        D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        
+        /* begin iterations */
+        for(ll=0; ll<iter; ll++) {
+            
+            /* computing the gradient of the objective function */
+            Obj_func3D(A, D, R1, R2, R3,lambda, dimX, dimY, dimZ);
+            
+            /*Taking a step towards minus of the gradient*/
+            Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
+            
+            /* projection step */
+            Proj_func3D(P1, P2, P3, dimX, dimY, dimZ);
+            
+            /*updating R and t*/
+            tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
+            Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ);
+            
+            /* calculate norm - stopping rules*/
+            re = 0.0f; re1 = 0.0f;
+            for(j=0; j<dimX*dimY*dimZ; j++)
+            {
+                re += pow(D[j] - D_old[j],2);
+                re1 += pow(D[j],2);
+            }
+            re = sqrt(re)/sqrt(re1);
+            /* stop if the norm residual is less than the tolerance EPS */
+            if (re < epsil)  count++;
+            if (count > 3) {
+                Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);                            
+                break;}
+            
+            /* check that the residual norm is decreasing */
+            if (ll > 2) {
+                if (re > re_old) {
+                Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
+                }}            
+            re_old = re;
+            /*printf("%f %i %i \n", re, ll, count); */
+            
+            /*storing old values*/
+            copyIm(D, D_old, dimX, dimY, dimZ);
+            copyIm(P1, P1_old, dimX, dimY, dimZ);
+            copyIm(P2, P2_old, dimX, dimY, dimZ);
+            copyIm(P3, P3_old, dimX, dimY, dimZ);
+            tk = tkp1;
+            
+            if (ll == (iter-1)) Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);            
+        }
+        printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
+    }
+}
diff --git a/Core/regularizers_CPU/FGP_TV_core.c b/Core/regularizers_CPU/FGP_TV_core.c
new file mode 100644
index 0000000..03cd445
--- /dev/null
+++ b/Core/regularizers_CPU/FGP_TV_core.c
@@ -0,0 +1,266 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "FGP_TV_core.h"
+
+/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume [REQUIRED]
+ * 2. lambda - regularization parameter [REQUIRED]
+ * 3. Number of iterations [OPTIONAL parameter]
+ * 4. eplsilon: tolerance constant [OPTIONAL parameter]
+ * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+ *
+ * Output:
+ * [1] Filtered/regularized image
+ * [2] last function value 
+ *
+ * Example of image denoising:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+ * u0 = Im + .05*randn(size(Im)); % adding noise
+ * u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+ *
+ * This function is based on the Matlab's code and paper by
+ * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+ *
+ * D. Kazantsev, 2016-17
+ *
+ */
+
+/* 2D-case related Functions */
+/*****************************************************************/
+float Obj_func_CALC2D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY)
+{   
+    int i,j;
+    float f1, f2, val1, val2;
+    
+    /*data-related term */
+    f1 = 0.0f;
+    for(i=0; i<dimX*dimY; i++) f1 += pow(D[i] - A[i],2);    
+    
+    /*TV-related term */
+    f2 = 0.0f;
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            /* boundary conditions  */
+            if (i == dimX-1) {val1 = 0.0f;} else {val1 = A[(i+1)*dimY + (j)] - A[(i)*dimY + (j)];}
+            if (j == dimY-1) {val2 = 0.0f;} else {val2 = A[(i)*dimY + (j+1)] - A[(i)*dimY + (j)];}    
+            f2 += sqrt(pow(val1,2) + pow(val2,2));
+        }}  
+    
+    /* sum of two terms */
+    funcvalA[0] = 0.5f*f1 + lambda*f2;     
+    return *funcvalA;
+}
+
+float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
+{
+	float val1, val2;
+	int i, j;
+#pragma omp parallel for shared(A,D,R1,R2) private(i,j,val1,val2)
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			/* boundary conditions  */
+			if (i == 0) { val1 = 0.0f; }
+			else { val1 = R1[(i - 1)*dimY + (j)]; }
+			if (j == 0) { val2 = 0.0f; }
+			else { val2 = R2[(i)*dimY + (j - 1)]; }
+			D[(i)*dimY + (j)] = A[(i)*dimY + (j)] - lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2);
+		}
+	}
+	return *D;
+}
+float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
+{
+	float val1, val2, multip;
+	int i, j;
+	multip = (1.0f / (8.0f*lambda));
+#pragma omp parallel for shared(P1,P2,D,R1,R2,multip) private(i,j,val1,val2)
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			/* boundary conditions */
+			if (i == dimX - 1) val1 = 0.0f; else val1 = D[(i)*dimY + (j)] - D[(i + 1)*dimY + (j)];
+			if (j == dimY - 1) val2 = 0.0f; else val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j + 1)];
+			P1[(i)*dimY + (j)] = R1[(i)*dimY + (j)] + multip*val1;
+			P2[(i)*dimY + (j)] = R2[(i)*dimY + (j)] + multip*val2;
+		}
+	}
+	return 1;
+}
+float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY)
+{
+	float val1, val2, denom;
+	int i, j;
+	if (methTV == 0) {
+		/* isotropic TV*/
+#pragma omp parallel for shared(P1,P2) private(i,j,denom)
+		for (i = 0; i<dimX; i++) {
+			for (j = 0; j<dimY; j++) {
+				denom = pow(P1[(i)*dimY + (j)], 2) + pow(P2[(i)*dimY + (j)], 2);
+				if (denom > 1) {
+					P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / sqrt(denom);
+					P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / sqrt(denom);
+				}
+			}
+		}
+	}
+	else {
+		/* anisotropic TV*/
+#pragma omp parallel for shared(P1,P2) private(i,j,val1,val2)
+		for (i = 0; i<dimX; i++) {
+			for (j = 0; j<dimY; j++) {
+				val1 = fabs(P1[(i)*dimY + (j)]);
+				val2 = fabs(P2[(i)*dimY + (j)]);
+				if (val1 < 1.0f) { val1 = 1.0f; }
+				if (val2 < 1.0f) { val2 = 1.0f; }
+				P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / val1;
+				P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / val2;
+			}
+		}
+	}
+	return 1;
+}
+float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY)
+{
+	int i, j;
+	float multip;
+	multip = ((tk - 1.0f) / tkp1);
+#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i,j)
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			R1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] + multip*(P1[(i)*dimY + (j)] - P1_old[(i)*dimY + (j)]);
+			R2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] + multip*(P2[(i)*dimY + (j)] - P2_old[(i)*dimY + (j)]);
+		}
+	}
+	return 1;
+}
+
+/* 3D-case related Functions */
+/*****************************************************************/
+float Obj_func_CALC3D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY, int dimZ)
+{   
+    int i,j,k;
+    float f1, f2, val1, val2, val3;
+    
+    /*data-related term */
+    f1 = 0.0f;
+    for(i=0; i<dimX*dimY*dimZ; i++) f1 += pow(D[i] - A[i],2);    
+    
+    /*TV-related term */
+    f2 = 0.0f;
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            for(k=0; k<dimZ; k++) {
+            /* boundary conditions  */
+            if (i == dimX-1) {val1 = 0.0f;} else {val1 = A[(dimX*dimY)*k + (i+1)*dimY + (j)] - A[(dimX*dimY)*k + (i)*dimY + (j)];}
+            if (j == dimY-1) {val2 = 0.0f;} else {val2 = A[(dimX*dimY)*k + (i)*dimY + (j+1)] - A[(dimX*dimY)*k + (i)*dimY + (j)];}    
+            if (k == dimZ-1) {val3 = 0.0f;} else {val3 = A[(dimX*dimY)*(k+1) + (i)*dimY + (j)] - A[(dimX*dimY)*k + (i)*dimY + (j)];}    
+            f2 += sqrt(pow(val1,2) + pow(val2,2)  + pow(val3,2));
+        }}}     
+    /* sum of two terms */
+    funcvalA[0] = 0.5f*f1 + lambda*f2;     
+    return *funcvalA;
+}
+
+float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
+{
+	float val1, val2, val3;
+	int i, j, k;
+#pragma omp parallel for shared(A,D,R1,R2,R3) private(i,j,k,val1,val2,val3)
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			for (k = 0; k<dimZ; k++) {
+				/* boundary conditions */
+				if (i == 0) { val1 = 0.0f; }
+				else { val1 = R1[(dimX*dimY)*k + (i - 1)*dimY + (j)]; }
+				if (j == 0) { val2 = 0.0f; }
+				else { val2 = R2[(dimX*dimY)*k + (i)*dimY + (j - 1)]; }
+				if (k == 0) { val3 = 0.0f; }
+				else { val3 = R3[(dimX*dimY)*(k - 1) + (i)*dimY + (j)]; }
+				D[(dimX*dimY)*k + (i)*dimY + (j)] = A[(dimX*dimY)*k + (i)*dimY + (j)] - lambda*(R1[(dimX*dimY)*k + (i)*dimY + (j)] + R2[(dimX*dimY)*k + (i)*dimY + (j)] + R3[(dimX*dimY)*k + (i)*dimY + (j)] - val1 - val2 - val3);
+			}
+		}
+	}
+	return *D;
+}
+float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
+{
+	float val1, val2, val3, multip;
+	int i, j, k;
+	multip = (1.0f / (8.0f*lambda));
+#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(i,j,k,val1,val2,val3)
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			for (k = 0; k<dimZ; k++) {
+				/* boundary conditions */
+				if (i == dimX - 1) val1 = 0.0f; else val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i + 1)*dimY + (j)];
+				if (j == dimY - 1) val2 = 0.0f; else val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j + 1)];
+				if (k == dimZ - 1) val3 = 0.0f; else val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k + 1) + (i)*dimY + (j)];
+				P1[(dimX*dimY)*k + (i)*dimY + (j)] = R1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val1;
+				P2[(dimX*dimY)*k + (i)*dimY + (j)] = R2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val2;
+				P3[(dimX*dimY)*k + (i)*dimY + (j)] = R3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val3;
+			}
+		}
+	}
+	return 1;
+}
+float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ)
+{
+	float val1, val2, val3;
+	int i, j, k;
+#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,val1,val2,val3)
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			for (k = 0; k<dimZ; k++) {
+				val1 = fabs(P1[(dimX*dimY)*k + (i)*dimY + (j)]);
+				val2 = fabs(P2[(dimX*dimY)*k + (i)*dimY + (j)]);
+				val3 = fabs(P3[(dimX*dimY)*k + (i)*dimY + (j)]);
+				if (val1 < 1.0f) { val1 = 1.0f; }
+				if (val2 < 1.0f) { val2 = 1.0f; }
+				if (val3 < 1.0f) { val3 = 1.0f; }
+
+				P1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] / val1;
+				P2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] / val2;
+				P3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] / val3;
+			}
+		}
+	}
+	return 1;
+}
+float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ)
+{
+	int i, j, k;
+	float multip;
+	multip = ((tk - 1.0f) / tkp1);
+#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i,j,k)
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			for (k = 0; k<dimZ; k++) {
+				R1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P1[(dimX*dimY)*k + (i)*dimY + (j)] - P1_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+				R2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P2[(dimX*dimY)*k + (i)*dimY + (j)] - P2_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+				R3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P3[(dimX*dimY)*k + (i)*dimY + (j)] - P3_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+			}
+		}
+	}
+	return 1;
+}
+
+
diff --git a/Core/regularizers_CPU/FGP_TV_core.h b/Core/regularizers_CPU/FGP_TV_core.h
new file mode 100644
index 0000000..6430bf2
--- /dev/null
+++ b/Core/regularizers_CPU/FGP_TV_core.h
@@ -0,0 +1,71 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+//#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+#include "utils.h"
+
+/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+*
+* Input Parameters:
+* 1. Noisy image/volume [REQUIRED]
+* 2. lambda - regularization parameter [REQUIRED]
+* 3. Number of iterations [OPTIONAL parameter]
+* 4. eplsilon: tolerance constant [OPTIONAL parameter]
+* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+*
+* Output:
+* [1] Filtered/regularized image
+* [2] last function value
+*
+* Example of image denoising:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+* u0 = Im + .05*randn(size(Im)); % adding noise
+* u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+*
+* to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* This function is based on the Matlab's code and paper by
+* [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+*
+* D. Kazantsev, 2016-17
+*
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
+float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
+float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
+float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY);
+float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY);
+float Obj_func_CALC2D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY);
+
+float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
+float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
+float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ);
+float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ);
+float Obj_func_CALC3D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY, int dimZ);
+#ifdef __cplusplus
+}
+#endif
\ No newline at end of file
diff --git a/Core/regularizers_CPU/LLT_model.c b/Core/regularizers_CPU/LLT_model.c
new file mode 100644
index 0000000..0b07b47
--- /dev/null
+++ b/Core/regularizers_CPU/LLT_model.c
@@ -0,0 +1,169 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "mex.h"
+#include "matrix.h"
+#include "LLT_model_core.h"
+
+/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
+*
+* Input Parameters:
+* 1. U0 - original noise image/volume
+* 2. lambda - regularization parameter
+* 3. tau - time-step  for explicit scheme
+* 4. iter - iterations number
+* 5. epsil  - tolerance constant (to terminate earlier)
+* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test)
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+* u0 = Im + .03*randn(size(Im)); % adding noise
+* [Den] = LLT_model(single(u0), 10, 0.1, 1);
+*
+*
+* to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE
+*
+* 28.11.16/Harwell
+*/
+
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[])
+        
+{
+    int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, switcher;
+    const int  *dim_array;
+    float *U0, *U=NULL, *U_old=NULL, *D1=NULL, *D2=NULL, *D3=NULL, lambda, tau, re, re1, epsil, re_old;
+    unsigned short *Map=NULL;
+    
+    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+    dim_array = mxGetDimensions(prhs[0]);
+    
+    /*Handling Matlab input data*/
+    U0  = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/
+    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
+    lambda =  (float) mxGetScalar(prhs[1]); /*regularization parameter*/
+    tau =  (float) mxGetScalar(prhs[2]); /* time-step */
+    iter =  (int) mxGetScalar(prhs[3]); /*iterations number*/
+    epsil =  (float) mxGetScalar(prhs[4]); /* tolerance constant */
+    switcher =  (int) mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/
+     
+    /*Handling Matlab output data*/
+    dimX = dim_array[0]; dimY = dim_array[1];  dimZ = 1;
+    
+    if (number_of_dims == 2) {
+        /*2D case*/       
+        U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+    }
+    else if (number_of_dims == 3) {
+        /*3D case*/
+        dimZ = dim_array[2];
+        U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        if (switcher != 0) {
+        Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));       
+        }
+    }
+    else {mexErrMsgTxt("The input data should be 2D or 3D");}
+    
+    /*Copy U0 to U*/
+    copyIm(U0, U, dimX, dimY, dimZ);
+    
+    count = 1;
+    re_old = 0.0f; 
+    if (number_of_dims == 2) {
+        for(ll = 0; ll < iter; ll++) {
+            
+            copyIm(U, U_old, dimX, dimY, dimZ);
+            
+            /*estimate inner derrivatives */
+            der2D(U, D1, D2, dimX, dimY, dimZ);
+            /* calculate div^2 and update */
+            div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau);
+            
+            /* calculate norm to terminate earlier */
+            re = 0.0f; re1 = 0.0f;
+            for(j=0; j<dimX*dimY*dimZ; j++)
+            {
+                re += pow(U_old[j] - U[j],2);
+                re1 += pow(U_old[j],2);
+            }
+            re = sqrt(re)/sqrt(re1);           
+            if (re < epsil)  count++;
+            if (count > 4) break;            
+            
+            /* check that the residual norm is decreasing */
+            if (ll > 2) {
+                if (re > re_old) break; 
+            }
+            re_old = re;         
+        
+        } /*end of iterations*/
+        printf("HO iterations stopped at iteration: %i\n", ll);          
+    }
+    /*3D version*/
+    if (number_of_dims == 3) {
+        
+        if (switcher == 1) {
+            /* apply restrictive smoothing */            
+            calcMap(U, Map, dimX, dimY, dimZ);
+            /*clear outliers */
+            cleanMap(Map, dimX, dimY, dimZ);           
+        }
+        for(ll = 0; ll < iter; ll++) {
+            
+            copyIm(U, U_old, dimX, dimY, dimZ);
+            
+            /*estimate inner derrivatives */
+            der3D(U, D1, D2, D3, dimX, dimY, dimZ);          
+            /* calculate div^2 and update */
+            div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau);                 
+            
+            /* calculate norm to terminate earlier */
+            re = 0.0f; re1 = 0.0f;
+            for(j=0; j<dimX*dimY*dimZ; j++)
+            {
+                re += pow(U_old[j] - U[j],2);
+                re1 += pow(U_old[j],2);
+            }
+            re = sqrt(re)/sqrt(re1);           
+            if (re < epsil)  count++;
+            if (count > 4) break;            
+            
+            /* check that the residual norm is decreasing */
+            if (ll > 2) {
+                if (re > re_old) break; 
+            }
+            re_old = re;     
+            
+        } /*end of iterations*/
+        printf("HO iterations stopped at iteration: %i\n", ll);       
+    }
+}
diff --git a/Core/regularizers_CPU/LLT_model_core.c b/Core/regularizers_CPU/LLT_model_core.c
new file mode 100644
index 0000000..3a853d2
--- /dev/null
+++ b/Core/regularizers_CPU/LLT_model_core.c
@@ -0,0 +1,318 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "LLT_model_core.h"
+
+/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
+*
+* Input Parameters:
+* 1. U0 - origanal noise image/volume
+* 2. lambda - regularization parameter
+* 3. tau - time-step  for explicit scheme
+* 4. iter - iterations number
+* 5. epsil  - tolerance constant (to terminate earlier)
+* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test)
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+* u0 = Im + .03*randn(size(Im)); % adding noise
+* [Den] = LLT_model(single(u0), 10, 0.1, 1);
+*
+* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE
+*
+* 28.11.16/Harwell
+*/
+
+
+float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ)
+{
+	int i, j, i_p, i_m, j_m, j_p;
+	float dxx, dyy, denom_xx, denom_yy;
+#pragma omp parallel for shared(U,D1,D2) private(i, j, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy)
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			/* symmetric boundary conditions (Neuman) */
+			i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+			i_m = i - 1; if (i_m < 0) i_m = i + 1;
+			j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+			j_m = j - 1; if (j_m < 0) j_m = j + 1;
+
+			dxx = U[i_p*dimY + j] - 2.0f*U[i*dimY + j] + U[i_m*dimY + j];
+			dyy = U[i*dimY + j_p] - 2.0f*U[i*dimY + j] + U[i*dimY + j_m];
+
+			denom_xx = fabs(dxx) + EPS;
+			denom_yy = fabs(dyy) + EPS;
+
+			D1[i*dimY + j] = dxx / denom_xx;
+			D2[i*dimY + j] = dyy / denom_yy;
+		}
+	}
+	return 1;
+}
+float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau)
+{
+	int i, j, i_p, i_m, j_m, j_p;
+	float div, dxx, dyy;
+#pragma omp parallel for shared(U,U0,D1,D2) private(i, j, i_p, i_m, j_m, j_p, div, dxx, dyy)
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			/* symmetric boundary conditions (Neuman) */
+			i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+			i_m = i - 1; if (i_m < 0) i_m = i + 1;
+			j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+			j_m = j - 1; if (j_m < 0) j_m = j + 1;
+
+			dxx = D1[i_p*dimY + j] - 2.0f*D1[i*dimY + j] + D1[i_m*dimY + j];
+			dyy = D2[i*dimY + j_p] - 2.0f*D2[i*dimY + j] + D2[i*dimY + j_m];
+
+			div = dxx + dyy;
+
+			U[i*dimY + j] = U[i*dimY + j] - tau*div - tau*lambda*(U[i*dimY + j] - U0[i*dimY + j]);
+		}
+	}
+	return *U0;
+}
+
+float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ)
+{
+	int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
+	float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz;
+#pragma omp parallel for shared(U,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz)
+	for (i = 0; i<dimX; i++) {
+		/* symmetric boundary conditions (Neuman) */
+		i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+		i_m = i - 1; if (i_m < 0) i_m = i + 1;
+		for (j = 0; j<dimY; j++) {
+			j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+			j_m = j - 1; if (j_m < 0) j_m = j + 1;
+			for (k = 0; k<dimZ; k++) {
+				k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
+				k_m = k - 1; if (k_m < 0) k_m = k + 1;
+
+				dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
+				dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
+				dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];
+
+				denom_xx = fabs(dxx) + EPS;
+				denom_yy = fabs(dyy) + EPS;
+				denom_zz = fabs(dzz) + EPS;
+
+				D1[dimX*dimY*k + i*dimY + j] = dxx / denom_xx;
+				D2[dimX*dimY*k + i*dimY + j] = dyy / denom_yy;
+				D3[dimX*dimY*k + i*dimY + j] = dzz / denom_zz;
+
+			}
+		}
+	}
+	return 1;
+}
+
+float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau)
+{
+	int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
+	float div, dxx, dyy, dzz;
+#pragma omp parallel for shared(U,U0,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, div, dxx, dyy, dzz)
+	for (i = 0; i<dimX; i++) {
+		/* symmetric boundary conditions (Neuman) */
+		i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+		i_m = i - 1; if (i_m < 0) i_m = i + 1;
+		for (j = 0; j<dimY; j++) {
+			j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+			j_m = j - 1; if (j_m < 0) j_m = j + 1;
+			for (k = 0; k<dimZ; k++) {
+				k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
+				k_m = k - 1; if (k_m < 0) k_m = k + 1;
+				//                 k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
+				//                 k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;   
+
+				dxx = D1[dimX*dimY*k + i_p*dimY + j] - 2.0f*D1[dimX*dimY*k + i*dimY + j] + D1[dimX*dimY*k + i_m*dimY + j];
+				dyy = D2[dimX*dimY*k + i*dimY + j_p] - 2.0f*D2[dimX*dimY*k + i*dimY + j] + D2[dimX*dimY*k + i*dimY + j_m];
+				dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
+
+				if ((switcher == 1) && (Map[dimX*dimY*k + i*dimY + j] == 0)) dzz = 0;
+				div = dxx + dyy + dzz;
+
+				//                 if (switcher == 1) {                    
+				// if (Map2[dimX*dimY*k + i*dimY + j] == 0) dzz2 = 0;
+				//else dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];
+				//                     div = dzz + dzz2;
+				//                 }
+
+				//                 dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
+				//                 dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];  
+				//                 div = dzz + dzz2;
+
+				U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] - tau*div - tau*lambda*(U[dimX*dimY*k + i*dimY + j] - U0[dimX*dimY*k + i*dimY + j]);
+			}
+		}
+	}
+	return *U0;
+}
+
+// float der3D_2(float *U, float *D1, float *D2, float *D3, float *D4, int dimX, int dimY, int dimZ)
+// {
+//     int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, k_p1, k_m1;
+//     float dxx, dyy, dzz, dzz2, denom_xx, denom_yy, denom_zz, denom_zz2;
+// #pragma omp parallel for shared(U,D1,D2,D3,D4) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, denom_zz2, dxx, dyy, dzz, dzz2, k_p1, k_m1)
+//     for(i=0; i<dimX; i++) {
+//         /* symmetric boundary conditions (Neuman) */
+//         i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+//         i_m = i - 1; if (i_m < 0) i_m = i + 1;
+//         for(j=0; j<dimY; j++) {
+//             j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+//             j_m = j - 1; if (j_m < 0) j_m = j + 1;
+//             for(k=0; k<dimZ; k++) {
+//                 k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
+//                 k_m = k - 1; if (k_m < 0) k_m = k + 1;
+//                 k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
+//                 k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;                
+//                 
+//                 dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
+//                 dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
+//                 dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];                
+//                 dzz2 = U[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m1 + i*dimY + j];                
+//                 
+//                 denom_xx = fabs(dxx) + EPS;
+//                 denom_yy = fabs(dyy) + EPS;
+//                 denom_zz = fabs(dzz) + EPS;
+//                 denom_zz2 = fabs(dzz2) + EPS;
+//                 
+//                 D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx;
+//                 D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy;
+//                 D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz;               
+//                 D4[dimX*dimY*k + i*dimY + j] = dzz2/denom_zz2;                               
+//             }}}
+//     return 1;
+// }
+
+float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ)
+{
+	int i, j, k, i1, j1, i2, j2, windowSize;
+	float val1, val2, thresh_val, maxval;
+	windowSize = 1;
+	thresh_val = 0.0001; /*thresh_val = 0.0035;*/
+
+						 /* normalize volume first */
+	maxval = 0.0f;
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			for (k = 0; k<dimZ; k++) {
+				if (U[dimX*dimY*k + i*dimY + j] > maxval) maxval = U[dimX*dimY*k + i*dimY + j];
+			}
+		}
+	}
+
+	if (maxval != 0.0f) {
+		for (i = 0; i<dimX; i++) {
+			for (j = 0; j<dimY; j++) {
+				for (k = 0; k<dimZ; k++) {
+					U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] / maxval;
+				}
+			}
+		}
+	}
+	else {
+		printf("%s \n", "Maximum value is zero!");
+		return 0;
+	}
+
+#pragma omp parallel for shared(U,Map) private(i, j, k, i1, j1, i2, j2, val1, val2)
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			for (k = 0; k<dimZ; k++) {
+
+				Map[dimX*dimY*k + i*dimY + j] = 0;
+				//                 Map2[dimX*dimY*k + i*dimY + j] = 0; 
+
+				val1 = 0.0f; val2 = 0.0f;
+				for (i1 = -windowSize; i1 <= windowSize; i1++) {
+					for (j1 = -windowSize; j1 <= windowSize; j1++) {
+						i2 = i + i1;
+						j2 = j + j1;
+
+						if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
+							if (k == 0) {
+								val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2);
+								//                           val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);                                                  
+							}
+							else if (k == dimZ - 1) {
+								val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2);
+								//                           val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);                           
+							}
+							//                       else if (k == 1) {
+							//                           val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); 
+							//                           val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);  
+							//                           val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);                           
+							//                       }
+							//                       else if (k == dimZ-2) {
+							//                           val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); 
+							//                           val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);      
+							//                           val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);                           
+							//                       }                      
+							else {
+								val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2);
+								val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2);
+								//                           val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); 
+								//                           val4 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);  
+							}
+						}
+					}
+				}
+
+				val1 = 0.111f*val1; val2 = 0.111f*val2;
+				//                  val3 = 0.111f*val3; val4 = 0.111f*val4;
+				if ((val1 <= thresh_val) && (val2 <= thresh_val)) Map[dimX*dimY*k + i*dimY + j] = 1;
+				//                  if ((val3 <= thresh_val) && (val4 <= thresh_val)) Map2[dimX*dimY*k + i*dimY + j] = 1;                        
+			}
+		}
+	}
+	return 1;
+}
+
+float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ)
+{
+	int i, j, k, i1, j1, i2, j2, counter;
+#pragma omp parallel for shared(Map) private(i, j, k, i1, j1, i2, j2, counter)
+	for (i = 0; i<dimX; i++) {
+		for (j = 0; j<dimY; j++) {
+			for (k = 0; k<dimZ; k++) {
+
+				counter = 0;
+				for (i1 = -3; i1 <= 3; i1++) {
+					for (j1 = -3; j1 <= 3; j1++) {
+						i2 = i + i1;
+						j2 = j + j1;
+						if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
+							if (Map[dimX*dimY*k + i2*dimY + j2] == 0) counter++;
+						}
+					}
+				}
+				if (counter < 24) Map[dimX*dimY*k + i*dimY + j] = 1;
+			}
+		}
+	}
+	return *Map;
+}
+
+
+/*********************3D *********************/
\ No newline at end of file
diff --git a/Core/regularizers_CPU/LLT_model_core.h b/Core/regularizers_CPU/LLT_model_core.h
new file mode 100644
index 0000000..13fce5a
--- /dev/null
+++ b/Core/regularizers_CPU/LLT_model_core.h
@@ -0,0 +1,46 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+//#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+#include "utils.h"
+
+#define EPS 0.01
+
+/* 2D functions */
+#ifdef __cplusplus
+extern "C" {
+#endif
+float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ);
+float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau);
+
+float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ);
+float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau);
+
+float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ);
+float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ);
+
+//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
+#ifdef __cplusplus
+}
+#endif
\ No newline at end of file
diff --git a/Core/regularizers_CPU/PatchBased_Regul.c b/Core/regularizers_CPU/PatchBased_Regul.c
new file mode 100644
index 0000000..5d89b0c
--- /dev/null
+++ b/Core/regularizers_CPU/PatchBased_Regul.c
@@ -0,0 +1,140 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "mex.h"
+#include "matrix.h"
+#include "PatchBased_Regul_core.h"
+
+
+/* C-OMP implementation of  patch-based (PB) regularization (2D and 3D cases). 
+ * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
+ * 
+ * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
+ *             2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
+ *
+ * Input Parameters:
+ * 1. Image (2D or 3D) [required]
+ * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional]
+ * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional]
+ * 4. h - parameter for the PB penalty function [optional]
+ * 5. lambda - regularization parameter  [optional]
+
+ * Output:
+ * 1. regularized (denoised) Image (N x N)/volume (N x N x N)
+ *
+ * 2D denoising example in Matlab:   
+   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+   ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05); 
+ *
+ * Matlab + C/mex compilers needed
+ * to compile with OMP support: mex PatchBased_Regul.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
+ *
+ * D. Kazantsev *
+ * 02/07/2014
+ * Harwell, UK
+ */
+
+
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[]) 
+{    
+    int N, M, Z, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop;
+    const int  *dims;
+    float *A, *B=NULL, *Ap=NULL, *Bp=NULL, h, lambda;
+    
+    numdims = mxGetNumberOfDimensions(prhs[0]);
+    dims = mxGetDimensions(prhs[0]);
+    
+    N = dims[0];
+    M = dims[1];
+    Z = dims[2];
+    
+    if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input is 2D image or 3D volume");}
+    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
+    
+    if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
+    
+    /*Handling inputs*/
+    A  = (float *) mxGetData(prhs[0]);    /* the image/volume to regularize/filter */
+    SearchW_real = 3; /*default value*/
+    SimilW = 1; /*default value*/
+    h = 0.1; 
+    lambda = 0.1;
+    
+    if ((nrhs == 2) || (nrhs == 3) || (nrhs == 4) || (nrhs == 5))   SearchW_real  = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
+    if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5))   SimilW =  (int) mxGetScalar(prhs[2]);  /* the similarity window ratio */
+    if ((nrhs == 4) || (nrhs == 5))  h =  (float) mxGetScalar(prhs[3]);  /* parameter for the PB filtering function */
+    if ((nrhs == 5))  lambda = (float) mxGetScalar(prhs[4]); /* regularization parameter */   
+
+
+    if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
+    if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0");
+       
+    SearchW = SearchW_real + 2*SimilW;
+    
+    /* SearchW_full = 2*SearchW + 1; */ /* the full searching window  size */
+    /* SimilW_full = 2*SimilW + 1;  */  /* the full similarity window  size */
+    
+    padXY = SearchW + 2*SimilW; /* padding sizes */
+    newsizeX = N + 2*(padXY); /* the X size of the padded array */
+    newsizeY = M + 2*(padXY); /* the Y size of the padded array */
+    newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
+    int N_dims[] = {newsizeX, newsizeY, newsizeZ};
+    
+    /******************************2D case ****************************/
+    if (numdims == 2) {
+        /*Handling output*/
+        B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
+        /*allocating memory for the padded arrays */
+        Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+        Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+        /**************************************************************************/
+        /*Perform padding of image A to the size of [newsizeX * newsizeY] */
+        switchpad_crop = 0; /*padding*/
+        pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+        
+        /* Do PB regularization with the padded array  */
+        PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda);
+        
+        switchpad_crop = 1; /*cropping*/
+        pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+    }
+    else
+    {
+        /******************************3D case ****************************/
+        /*Handling output*/
+        B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
+        /*allocating memory for the padded arrays */
+        Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+        Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+        /**************************************************************************/
+        
+        /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
+        switchpad_crop = 0; /*padding*/
+        pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+        
+        /* Do PB regularization with the padded array  */
+        PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda);
+        
+        switchpad_crop = 1; /*cropping*/
+        pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+    } /*end else ndims*/ 
+}    
diff --git a/Core/regularizers_CPU/PatchBased_Regul_core.c b/Core/regularizers_CPU/PatchBased_Regul_core.c
new file mode 100644
index 0000000..fe88ffb
--- /dev/null
+++ b/Core/regularizers_CPU/PatchBased_Regul_core.c
@@ -0,0 +1,232 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "PatchBased_Regul_core.h"
+#include <string.h>
+/* C-OMP implementation of  patch-based (PB) regularization (2D and 3D cases). 
+ * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
+ * 
+ * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
+ *             2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
+ *
+ * Input Parameters:
+ * 1. Image (2D or 3D) [required]
+ * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional]
+ * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional]
+ * 4. h - parameter for the PB penalty function [optional]
+ * 5. lambda - regularization parameter  [optional]
+
+ * Output:
+ * 1. regularized (denoised) Image (N x N)/volume (N x N x N)
+ *
+ * 2D denoising example in Matlab:   
+   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+   ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05); 
+ 
+ * D. Kazantsev *
+ * 02/07/2014
+ * Harwell, UK
+ */
+
+/*2D version function */
+float PB_FUNC2D(float *Ap, float *Bp, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda)
+{
+    int i, j, i_n, j_n, i_m, j_m, i_p, j_p, i_l, j_l, i1, j1, i2, j2, i3, j3, i5,j5, count, SimilW_full;
+    float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob, t1;
+    
+    float A[dimX*dimY], B[dimX*dimY];
+
+    //fill the structures
+    int index=0;
+    for (i=0;i<dimX;i++){
+    	for (j=0;j<dimY;j++){
+		int index = j + dimX * i;
+
+		float val = (*(Ap + index));
+		memcpy(A + index , &val, sizeof(float));
+		val = (*(Bp + index));
+		memcpy(B + index , &val, sizeof(float));
+	}
+    }
+    /*SearchW_full = 2*SearchW + 1; */ /* the full searching window  size */
+    SimilW_full = 2*SimilW + 1;   /* the full similarity window  size */
+    h2 = h*h;
+    denh2 = 1/(2*h2);   
+    
+     /*Gaussian kernel */
+    Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full,sizeof(float));
+    count = 0;
+    for(i_n=-SimilW; i_n<=SimilW; i_n++) {
+        for(j_n=-SimilW; j_n<=SimilW; j_n++) {
+            t1 = pow(((float)i_n), 2) + pow(((float)j_n), 2);
+            Eucl_Vec[count] = exp(-(t1)/(2*SimilW*SimilW));
+            count = count + 1;                       
+        }} /*main neighb loop */   
+
+   #pragma acc kernels copy(A[0:dimX*dimY], B[0:dimX*dimY], Eucl_Vec[0:SimilW_full*SimilW_full])
+   {
+    /*The NLM code starts here*/         
+    /* setting OMP here */
+    //#pragma omp parallel for shared (A, B, dimX, dimY, Eucl_Vec, lambda, denh2) private(denom, i, j, WeightGlob, count,  i1, j1, i2, j2, i3, j3, i5, j5, Weight_norm, normsum, i_m, j_m, i_n, j_n, i_l, j_l, i_p, j_p, Weight,  value)
+    
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+             if (((i >= padXY) && (i < dimX-padXY)) &&  ((j >= padXY) && (j < dimY-padXY))) {
+          
+                /* Massive Search window loop */
+                Weight_norm = 0; value = 0.0;
+                for(i_m=-SearchW; i_m<=SearchW; i_m++) {
+                    for(j_m=-SearchW; j_m<=SearchW; j_m++) {
+                       /*checking boundaries*/
+                        i1 = i+i_m; j1 = j+j_m;
+                        
+                        WeightGlob = 0.0;
+                        /* if inside the searching window */                        
+                         for(i_l=-SimilW; i_l<=SimilW; i_l++) {
+                             for(j_l=-SimilW; j_l<=SimilW; j_l++) {
+                                 i2 = i1+i_l; j2 = j1+j_l;
+                                 
+                                 i3 = i+i_l; j3 = j+j_l;   /*coordinates of the inner patch loop */
+                                
+                                 count = 0; normsum = 0.0;
+                                 for(i_p=-SimilW; i_p<=SimilW; i_p++) {
+                                     for(j_p=-SimilW; j_p<=SimilW; j_p++) {
+                                         i5 = i2 + i_p; j5 = j2 + j_p;
+                                         normsum = normsum + Eucl_Vec[count]*pow(A[(i3+i_p)*dimY+(j3+j_p)]-A[i5*dimY+j5], 2);        
+                                         count = count + 1;
+                                     }}
+                                  if (normsum != 0) Weight = (exp(-normsum*denh2)); 
+                                  else Weight = 0.0;
+                                 WeightGlob += Weight;
+                             }}                      
+      
+                         value += A[i1*dimY+j1]
+			           * WeightGlob;
+                         Weight_norm += WeightGlob;           
+                    }}      /*search window loop end*/
+                
+                /* the final loop to average all values in searching window with weights */
+                denom = 1 + lambda*Weight_norm;
+                B[i*dimY+j] = (A[i*dimY+j] + lambda*value)/denom;         
+             }
+        }}   /*main loop*/     
+
+	} // OpenAcc pragma
+    return (*B);
+    free(Eucl_Vec);    
+}
+ 
+/*3D version*/ 
+ float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda)       
+ {
+    int SimilW_full, count, i, j, k,  i_n, j_n, k_n, i_m, j_m, k_m, i_p, j_p, k_p, i_l, j_l, k_l, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5;
+    float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob;
+        
+    /*SearchW_full = 2*SearchW + 1; */ /* the full searching window  size */
+    SimilW_full = 2*SimilW + 1;   /* the full similarity window  size */
+    h2 = h*h;
+    denh2 = 1/(2*h2);
+    
+    /*Gaussian kernel */
+    Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full*SimilW_full,sizeof(float));
+    count = 0;
+    for(i_n=-SimilW; i_n<=SimilW; i_n++) {
+        for(j_n=-SimilW; j_n<=SimilW; j_n++) {
+            for(k_n=-SimilW; k_n<=SimilW; k_n++) {
+                Eucl_Vec[count] = exp(-(pow((float)i_n, 2) + pow((float)j_n, 2) + pow((float)k_n, 2))/(2*SimilW*SimilW*SimilW));
+                count = count + 1;
+            }}} /*main neighb loop */
+    
+    /*The NLM code starts here*/         
+    /* setting OMP here */
+    #pragma omp parallel for shared (A, B, dimX, dimY, dimZ, Eucl_Vec, lambda, denh2) private(denom, i, j, k, WeightGlob,count,  i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5, Weight_norm, normsum, i_m, j_m, k_m, i_n, j_n, k_n, i_l, j_l, k_l, i_p, j_p, k_p, Weight, value)    
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            for(k=0; k<dimZ; k++) {
+            if (((i >= padXY) && (i < dimX-padXY)) &&  ((j >= padXY) && (j < dimY-padXY)) &&  ((k >= padXY) && (k < dimZ-padXY))) {
+            /* take all elements around the pixel of interest */                             
+               /* Massive Search window loop */
+                Weight_norm = 0;  value = 0.0;
+                for(i_m=-SearchW; i_m<=SearchW; i_m++) {
+                    for(j_m=-SearchW; j_m<=SearchW; j_m++) {
+                        for(k_m=-SearchW; k_m<=SearchW; k_m++) {
+                         /*checking boundaries*/
+                        i1 = i+i_m; j1 = j+j_m; k1 = k+k_m;
+                        
+                        WeightGlob = 0.0;
+                        /* if inside the searching window */                        
+                         for(i_l=-SimilW; i_l<=SimilW; i_l++) {
+                             for(j_l=-SimilW; j_l<=SimilW; j_l++) {
+                                 for(k_l=-SimilW; k_l<=SimilW; k_l++) {                                 
+                                 i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
+                                 
+                                 i3 = i+i_l; j3 = j+j_l; k3 = k+k_l;   /*coordinates of the inner patch loop */
+                                
+                                 count = 0; normsum = 0.0;
+                                 for(i_p=-SimilW; i_p<=SimilW; i_p++) {
+                                     for(j_p=-SimilW; j_p<=SimilW; j_p++) {
+                                         for(k_p=-SimilW; k_p<=SimilW; k_p++) {
+                                         i5 = i2 + i_p; j5 = j2 + j_p; k5 = k2 + k_p;
+                                         normsum = normsum + Eucl_Vec[count]*pow(A[(dimX*dimY)*(k3+k_p)+(i3+i_p)*dimY+(j3+j_p)]-A[(dimX*dimY)*k5 + i5*dimY+j5], 2);        
+                                         count = count + 1;
+                                     }}}
+                                  if (normsum != 0) Weight = (exp(-normsum*denh2)); 
+                                  else Weight = 0.0;
+                                 WeightGlob += Weight;
+                             }}}                                                 
+                         value += A[(dimX*dimY)*k1 + i1*dimY+j1]*WeightGlob;
+                         Weight_norm += WeightGlob;
+             
+                    }}}      /*search window loop end*/
+                
+                /* the final loop to average all values in searching window with weights */
+                denom = 1 + lambda*Weight_norm;               
+                B[(dimX*dimY)*k + i*dimY+j] = (A[(dimX*dimY)*k + i*dimY+j] + lambda*value)/denom;      
+            }            
+        }}}   /*main loop*/              
+       free(Eucl_Vec);        
+       return *B;
+}
+
+float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
+{
+    /* padding-cropping function */
+    int i,j,k;    
+    if (NewSizeZ > 1) {    
+           for (i=0; i < NewSizeX; i++) {
+            for (j=0; j < NewSizeY; j++) {
+              for (k=0; k < NewSizeZ; k++) {
+                if (((i >= padXY) && (i < NewSizeX-padXY)) &&  ((j >= padXY) && (j < NewSizeY-padXY)) &&  ((k >= padXY) && (k < NewSizeZ-padXY))) {
+                    if (switchpad_crop == 0)  Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
+                    else  Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
+                }
+            }}}   
+    }
+    else {
+        for (i=0; i < NewSizeX; i++) {
+            for (j=0; j < NewSizeY; j++) {
+                if (((i >= padXY) && (i < NewSizeX-padXY)) &&  ((j >= padXY) && (j < NewSizeY-padXY))) {
+                    if (switchpad_crop == 0)  Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
+                    else  Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
+                }
+            }}
+    }
+    return *Ap;
+}
diff --git a/Core/regularizers_CPU/PatchBased_Regul_core.h b/Core/regularizers_CPU/PatchBased_Regul_core.h
new file mode 100644
index 0000000..d4a8a46
--- /dev/null
+++ b/Core/regularizers_CPU/PatchBased_Regul_core.h
@@ -0,0 +1,69 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#define _USE_MATH_DEFINES
+
+//#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+
+/* C-OMP implementation of  patch-based (PB) regularization (2D and 3D cases).
+* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
+*
+* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
+*             2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
+*
+* Input Parameters (mandatory):
+* 1. Image (2D or 3D)
+* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
+* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
+* 4. h - parameter for the PB penalty function
+* 5. lambda - regularization parameter
+
+* Output:
+* 1. regularized (denoised) Image (N x N)/volume (N x N x N)
+*
+* Quick 2D denoising example in Matlab:
+Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+*
+* Please see more tests in a file:
+TestTemporalSmoothing.m
+
+*
+* Matlab + C/mex compilers needed
+* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
+*
+* D. Kazantsev *
+* 02/07/2014
+* Harwell, UK
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
+float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda);
+float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda);
+#ifdef __cplusplus
+}
+#endif
\ No newline at end of file
diff --git a/Core/regularizers_CPU/SplitBregman_TV.c b/Core/regularizers_CPU/SplitBregman_TV.c
new file mode 100644
index 0000000..38f6a9d
--- /dev/null
+++ b/Core/regularizers_CPU/SplitBregman_TV.c
@@ -0,0 +1,179 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "mex.h"
+#include <matrix.h>
+#include "SplitBregman_TV_core.h"
+
+/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume
+ * 2. lambda - regularization parameter
+ * 3. Number of iterations [OPTIONAL parameter]
+ * 4. eplsilon - tolerance constant [OPTIONAL parameter]
+ * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+ *
+ * Output:
+ * Filtered/regularized image
+ *
+ * Example:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+ * u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+ * u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+ *
+ * to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+ * References:
+ * The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
+ * D. Kazantsev, 2016*
+ */
+
+
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[])
+        
+{
+    int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
+    const int  *dim_array;
+    float *A, *U=NULL, *U_old=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL, lambda, mu, epsil, re, re1, re_old;
+    
+    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+    dim_array = mxGetDimensions(prhs[0]);
+    
+    /*Handling Matlab input data*/
+    if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
+    
+    /*Handling Matlab input data*/
+    A  = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+    mu =  (float) mxGetScalar(prhs[1]); /* regularization parameter */
+    iter = 35; /* default iterations number */
+    epsil = 0.0001; /* default tolerance constant */
+    methTV = 0;  /* default isotropic TV penalty */
+    if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5))  iter = (int) mxGetScalar(prhs[2]); /* iterations number */
+    if ((nrhs == 4) || (nrhs == 5))  epsil =  (float) mxGetScalar(prhs[3]); /* tolerance constant */
+    if (nrhs == 5)  {
+        char *penalty_type;
+        penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+        if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+        if (strcmp(penalty_type, "l1") == 0)  methTV = 1;  /* enable 'l1' penalty */
+        mxFree(penalty_type);
+    }
+    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+    
+    lambda = 2.0f*mu;
+    count = 1;
+    re_old = 0.0f;
+    /*Handling Matlab output data*/
+    dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2];
+    
+    if (number_of_dims == 2) {
+        dimZ = 1; /*2D case*/
+        U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        
+        copyIm(A, U, dimX, dimY, dimZ); /*initialize */
+        
+        /* begin outer SB iterations */
+        for(ll=0; ll<iter; ll++) {
+            
+            /*storing old values*/
+            copyIm(U, U_old, dimX, dimY, dimZ);
+            
+            /*GS iteration */
+            gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu);
+            
+            if (methTV == 1)  updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
+            else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
+            
+            updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY);
+            
+            /* calculate norm to terminate earlier */
+            re = 0.0f; re1 = 0.0f;
+            for(j=0; j<dimX*dimY*dimZ; j++)
+            {
+                re += pow(U_old[j] - U[j],2);
+                re1 += pow(U_old[j],2);
+            }
+            re = sqrt(re)/sqrt(re1);
+            if (re < epsil)  count++;
+            if (count > 4) break;
+            
+            /* check that the residual norm is decreasing */
+            if (ll > 2) {
+                if (re > re_old) break;
+            }
+            re_old = re;
+            /*printf("%f %i %i \n", re, ll, count); */
+            
+            /*copyIm(U_old, U, dimX, dimY, dimZ); */
+        }
+        printf("SB iterations stopped at iteration: %i\n", ll);
+    }
+    if (number_of_dims == 3) {
+        U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+        
+        copyIm(A, U, dimX, dimY, dimZ); /*initialize */
+        
+        /* begin outer SB iterations */
+        for(ll=0; ll<iter; ll++) {
+            
+            /*storing old values*/
+            copyIm(U, U_old, dimX, dimY, dimZ);
+            
+            /*GS iteration */
+            gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu);
+            
+            if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
+            else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
+            
+            updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ);
+            
+            /* calculate norm to terminate earlier */
+            re = 0.0f; re1 = 0.0f;
+            for(j=0; j<dimX*dimY*dimZ; j++)
+            {
+                re += pow(U[j] - U_old[j],2);
+                re1 += pow(U[j],2);
+            }
+            re = sqrt(re)/sqrt(re1);
+            if (re < epsil)  count++;
+            if (count > 4) break;
+            
+            /* check that the residual norm is decreasing */
+            if (ll > 2) {
+                if (re > re_old) break; }
+            /*printf("%f %i %i \n", re, ll, count); */
+            re_old = re;
+        }
+        printf("SB iterations stopped at iteration: %i\n", ll);
+    }
+}
\ No newline at end of file
diff --git a/Core/regularizers_CPU/SplitBregman_TV_core.c b/Core/regularizers_CPU/SplitBregman_TV_core.c
new file mode 100644
index 0000000..4109a4b
--- /dev/null
+++ b/Core/regularizers_CPU/SplitBregman_TV_core.c
@@ -0,0 +1,259 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "SplitBregman_TV_core.h"
+
+/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
+*
+* Input Parameters:
+* 1. Noisy image/volume
+* 2. lambda - regularization parameter
+* 3. Number of iterations [OPTIONAL parameter]
+* 4. eplsilon - tolerance constant [OPTIONAL parameter]
+* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+* u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+*
+* References:
+* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
+* D. Kazantsev, 2016*
+*/
+
+
+/* 2D-case related Functions */
+/*****************************************************************/
+float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu)
+{
+    float sum, normConst;
+    int i,j,i1,i2,j1,j2;
+    normConst = 1.0f/(mu + 4.0f*lambda);
+    
+#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,sum)
+    for(i=0; i<dimX; i++) {
+        /* symmetric boundary conditions (Neuman) */
+        i1 = i+1; if (i1 == dimX) i1 = i-1;
+        i2 = i-1; if (i2 < 0) i2 = i+1;
+        for(j=0; j<dimY; j++) {
+            /* symmetric boundary conditions (Neuman) */
+            j1 = j+1; if (j1 == dimY) j1 = j-1;
+            j2 = j-1; if (j2 < 0) j2 = j+1;
+            
+            sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)];
+            sum += (U[(i1)*dimY + (j)] + U[(i2)*dimY + (j)] + U[(i)*dimY + (j1)] + U[(i)*dimY + (j2)]);
+            sum *= lambda;
+            sum += mu*A[(i)*dimY + (j)];
+            U[(i)*dimY + (j)] = normConst*sum;
+        }}
+    return *U;
+}
+
+float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
+{
+    int i,j,i1,j1;
+    float val1, val11, val2, val22, denom_lam;
+    denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,val22)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            /* symmetric boundary conditions (Neuman) */
+            i1 = i+1; if (i1 == dimX) i1 = i-1;
+            j1 = j+1; if (j1 == dimY) j1 = j-1;
+            
+            val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
+            val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
+            
+            val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
+            val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
+            
+            if (val1 !=0) Dx[(i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(i)*dimY + (j)] = 0;
+            if (val2 !=0) Dy[(i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(i)*dimY + (j)] = 0;
+            
+        }}
+    return 1;
+}
+float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
+{
+    int i,j,i1,j1;
+    float val1, val11, val2, denom, denom_lam;
+    denom_lam = 1.0f/lambda;
+    
+#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,denom)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            /* symmetric boundary conditions (Neuman) */
+            i1 = i+1; if (i1 == dimX) i1 = i-1;
+            j1 = j+1; if (j1 == dimY) j1 = j-1;
+            
+            val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
+            val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
+            
+            denom = sqrt(val1*val1 + val2*val2);
+            
+            val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
+            
+            if (denom != 0.0f) {
+                Dx[(i)*dimY + (j)] = val11*(val1/denom);
+                Dy[(i)*dimY + (j)] = val11*(val2/denom);
+            }
+            else {
+                Dx[(i)*dimY + (j)] = 0;
+                Dy[(i)*dimY + (j)] = 0;
+            }
+        }}
+    return 1;
+}
+float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY)
+{
+    int i,j,i1,j1;
+#pragma omp parallel for shared(U) private(i,j,i1,j1)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            /* symmetric boundary conditions (Neuman) */
+            i1 = i+1; if (i1 == dimX) i1 = i-1;
+            j1 = j+1; if (j1 == dimY) j1 = j-1;
+            
+            Bx[(i)*dimY + (j)] = Bx[(i)*dimY + (j)] + ((U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) - Dx[(i)*dimY + (j)]);
+            By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]);
+        }}
+    return 1;
+}
+
+
+/* 3D-case related Functions */
+/*****************************************************************/
+float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu)
+{
+    float normConst, d_val, b_val, sum;
+    int i,j,i1,i2,j1,j2,k,k1,k2;
+    normConst = 1.0f/(mu + 6.0f*lambda);
+#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            for(k=0; k<dimZ; k++) {
+                /* symmetric boundary conditions (Neuman) */
+                i1 = i+1; if (i1 == dimX) i1 = i-1;
+                i2 = i-1; if (i2 < 0) i2 = i+1;
+                j1 = j+1; if (j1 == dimY) j1 = j-1;
+                j2 = j-1; if (j2 < 0) j2 = j+1;
+                k1 = k+1; if (k1 == dimZ) k1 = k-1;
+                k2 = k-1; if (k2 < 0) k2 = k+1;
+                
+                d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)];
+                b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)];
+                sum =  d_val + b_val;
+                sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)];
+                sum *= lambda;
+                sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)];
+                U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum;
+            }}}
+    return *U;
+}
+
+float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
+{
+    int i,j,i1,j1,k,k1,index;
+    float val1, val11, val2, val22, val3, val33, denom_lam;
+    denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            for(k=0; k<dimZ; k++) {
+                index = (dimX*dimY)*k + (i)*dimY + (j);
+                /* symmetric boundary conditions (Neuman) */
+                i1 = i+1; if (i1 == dimX) i1 = i-1;
+                j1 = j+1; if (j1 == dimY) j1 = j-1;
+                k1 = k+1; if (k1 == dimZ) k1 = k-1;
+                
+                val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
+                val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
+                val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
+                
+                val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
+                val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
+                val33 = fabs(val3) - denom_lam; if (val33 < 0) val33 = 0;
+                
+                if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0;
+                if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0;
+                if (val3 !=0) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0;
+                
+            }}}
+    return 1;
+}
+float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
+{
+    int i,j,i1,j1,k,k1,index;
+    float val1, val11, val2, val3, denom, denom_lam;
+    denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            for(k=0; k<dimZ; k++) {
+                index = (dimX*dimY)*k + (i)*dimY + (j);
+                /* symmetric boundary conditions (Neuman) */
+                i1 = i+1; if (i1 == dimX) i1 = i-1;
+                j1 = j+1; if (j1 == dimY) j1 = j-1;
+                k1 = k+1; if (k1 == dimZ) k1 = k-1;
+                
+                val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
+                val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
+                val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
+                
+                denom = sqrt(val1*val1 + val2*val2 + val3*val3);
+                
+                val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
+                
+                if (denom != 0.0f) {
+                    Dx[index] = val11*(val1/denom);
+                    Dy[index] = val11*(val2/denom);
+                    Dz[index] = val11*(val3/denom);
+                }
+                else {
+                    Dx[index] = 0;
+                    Dy[index] = 0;
+                    Dz[index] = 0;
+                }               
+            }}}
+    return 1;
+}
+float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ)
+{
+    int i,j,k,i1,j1,k1;
+#pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            for(k=0; k<dimZ; k++) {
+                /* symmetric boundary conditions (Neuman) */
+                i1 = i+1; if (i1 == dimX) i1 = i-1;
+                j1 = j+1; if (j1 == dimY) j1 = j-1;
+                k1 = k+1; if (k1 == dimZ) k1 = k-1;
+                
+                Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]);
+                By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]);
+                Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]);
+                
+            }}}
+    return 1;
+}
diff --git a/Core/regularizers_CPU/SplitBregman_TV_core.h b/Core/regularizers_CPU/SplitBregman_TV_core.h
new file mode 100644
index 0000000..6ed3ff9
--- /dev/null
+++ b/Core/regularizers_CPU/SplitBregman_TV_core.h
@@ -0,0 +1,69 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+//#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+
+#include "utils.h"
+
+/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
+*
+* Input Parameters:
+* 1. Noisy image/volume
+* 2. lambda - regularization parameter
+* 3. Number of iterations [OPTIONAL parameter]
+* 4. eplsilon - tolerance constant [OPTIONAL parameter]
+* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+* u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+*
+* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* References:
+* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
+* D. Kazantsev, 2016*
+*/
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
+float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu);
+float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
+float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
+float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY);
+
+float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu);
+float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
+float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
+float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ);
+
+#ifdef __cplusplus
+}
+#endif
\ No newline at end of file
diff --git a/Core/regularizers_CPU/TGV_PD.c b/Core/regularizers_CPU/TGV_PD.c
new file mode 100644
index 0000000..c9cb440
--- /dev/null
+++ b/Core/regularizers_CPU/TGV_PD.c
@@ -0,0 +1,144 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "TGV_PD_core.h"
+#include "mex.h"
+
+/* C-OMP implementation of Primal-Dual denoising method for 
+ * Total Generilized Variation (TGV)-L2 model (2D case only)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume (2D)
+ * 2. lambda - regularization parameter
+ * 3. parameter to control first-order term (alpha1)
+ * 4. parameter to control the second-order term (alpha0)
+ * 5. Number of CP iterations
+ *
+ * Output:
+ * Filtered/regularized image 
+ *
+ * Example:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+ * u0 = Im + .03*randn(size(Im)); % adding noise
+ * tic; u = TGV_PD(single(u0), 0.02, 1.3, 1, 550); toc;
+ *
+ * to compile with OMP support: mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+ * References:
+ * K. Bredies "Total Generalized Variation"
+ *
+ * 28.11.16/Harwell
+ */
+ 
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[])
+        
+{
+    int number_of_dims, iter, dimX, dimY, dimZ, ll;
+    const int  *dim_array;
+    float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma,  alpha1, alpha0;
+    
+    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+    dim_array = mxGetDimensions(prhs[0]);
+    
+    /*Handling Matlab input data*/
+    A  = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/
+    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
+    lambda =  (float) mxGetScalar(prhs[1]); /*regularization parameter*/
+    alpha1 =  (float) mxGetScalar(prhs[2]); /*first-order term*/
+    alpha0 =  (float) mxGetScalar(prhs[3]); /*second-order term*/
+    iter =  (int) mxGetScalar(prhs[4]); /*iterations number*/
+    if(nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations");
+    
+    /*Handling Matlab output data*/
+    dimX = dim_array[0]; dimY = dim_array[1];
+    
+    if (number_of_dims == 2) {
+        /*2D case*/
+        dimZ = 1;
+        U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        
+        /*dual variables*/
+        P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        
+        Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        
+        U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        
+        V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+        V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));   
+        
+        
+         /*printf("%i \n", i);*/
+    L2 = 12.0f; /*Lipshitz constant*/
+    tau = 1.0/pow(L2,0.5);
+    sigma = 1.0/pow(L2,0.5);
+    
+    /*Copy A to U*/
+    copyIm(A, U, dimX, dimY, dimZ);
+    
+        /* Here primal-dual iterations begin for 2D */
+        for(ll = 0; ll < iter; ll++) {
+            
+            /* Calculate Dual Variable P */
+            DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma);
+            
+            /*Projection onto convex set for P*/
+            ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1);
+            
+            /* Calculate Dual Variable Q */
+            DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma);
+            
+            /*Projection onto convex set for Q*/
+            ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0);
+            
+            /*saving U into U_old*/
+            copyIm(U, U_old, dimX, dimY, dimZ);
+            
+            /*adjoint operation  -> divergence and projection of P*/
+            DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau);
+            
+            /*get updated solution U*/
+            newU(U, U_old, dimX, dimY, dimZ);
+            
+            /*saving V into V_old*/
+            copyIm(V1, V1_old, dimX, dimY, dimZ);
+            copyIm(V2, V2_old, dimX, dimY, dimZ);
+            
+            /* upd V*/
+            UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau);
+            
+            /*get new V*/
+            newU(V1, V1_old, dimX, dimY, dimZ);
+            newU(V2, V2_old, dimX, dimY, dimZ);
+        } /*end of iterations*/        
+    }
+    else if (number_of_dims == 3) {
+        mexErrMsgTxt("The input data should be a 2D array");
+        /*3D case*/
+    }
+    else {mexErrMsgTxt("The input data should be a 2D array");}    
+   
+}
diff --git a/Core/regularizers_CPU/TGV_PD_core.c b/Core/regularizers_CPU/TGV_PD_core.c
new file mode 100644
index 0000000..4139d10
--- /dev/null
+++ b/Core/regularizers_CPU/TGV_PD_core.c
@@ -0,0 +1,208 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "TGV_PD_core.h"
+
+/* C-OMP implementation of Primal-Dual denoising method for 
+ * Total Generilized Variation (TGV)-L2 model (2D case only)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume (2D)
+ * 2. lambda - regularization parameter
+ * 3. parameter to control first-order term (alpha1)
+ * 4. parameter to control the second-order term (alpha0)
+ * 5. Number of CP iterations
+ *
+ * Output:
+ * Filtered/regularized image 
+ *
+ * Example:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+ * u0 = Im + .03*randn(size(Im)); % adding noise
+ * tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc;
+ *
+ * References:
+ * K. Bredies "Total Generalized Variation"
+ *
+ * 28.11.16/Harwell
+ */
+ 
+
+
+
+/*Calculating dual variable P (using forward differences)*/
+float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma)
+{
+    int i,j;
+#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            /* symmetric boundary conditions (Neuman) */
+            if (i == dimX-1) P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i-1)*dimY + (j)] - U[i*dimY + (j)])  - V1[i*dimY + (j)]);
+            else P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i + 1)*dimY + (j)] - U[i*dimY + (j)])  - V1[i*dimY + (j)]);
+            if (j == dimY-1) P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j-1)] - U[i*dimY + (j)])  - V2[i*dimY + (j)]);
+            else  P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j+1)] - U[i*dimY + (j)])  - V2[i*dimY + (j)]);
+        }}
+    return 1;
+}
+/*Projection onto convex set for P*/
+float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1)
+{
+    float grad_magn;
+    int i,j;
+#pragma omp parallel for shared(P1,P2) private(i,j,grad_magn)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            grad_magn = sqrt(pow(P1[i*dimY + (j)],2) + pow(P2[i*dimY + (j)],2));
+            grad_magn = grad_magn/alpha1;
+            if (grad_magn > 1.0) {
+                P1[i*dimY + (j)] = P1[i*dimY + (j)]/grad_magn;
+                P2[i*dimY + (j)] = P2[i*dimY + (j)]/grad_magn;
+            }
+        }}
+    return 1;
+}
+/*Calculating dual variable Q (using forward differences)*/
+float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma)
+{
+    int i,j;
+    float q1, q2, q11, q22;
+#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,q1,q2,q11,q22)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            /* symmetric boundary conditions (Neuman) */
+            if (i == dimX-1)
+            { q1 = (V1[(i-1)*dimY + (j)] - V1[i*dimY + (j)]);
+              q11 = (V2[(i-1)*dimY + (j)] - V2[i*dimY + (j)]);
+            }
+            else {
+                q1 = (V1[(i+1)*dimY + (j)] - V1[i*dimY + (j)]);
+                q11 = (V2[(i+1)*dimY + (j)] - V2[i*dimY + (j)]);
+            }
+            if (j == dimY-1) {
+                q2 = (V2[(i)*dimY + (j-1)] - V2[i*dimY + (j)]);
+                q22 = (V1[(i)*dimY + (j-1)] - V1[i*dimY + (j)]);
+            }
+            else {
+                q2 = (V2[(i)*dimY + (j+1)] - V2[i*dimY + (j)]);
+                q22 = (V1[(i)*dimY + (j+1)] - V1[i*dimY + (j)]);
+            }
+            Q1[i*dimY + (j)] = Q1[i*dimY + (j)] + sigma*(q1);
+            Q2[i*dimY + (j)] = Q2[i*dimY + (j)] + sigma*(q2);
+            Q3[i*dimY + (j)] = Q3[i*dimY + (j)]  + sigma*(0.5f*(q11 + q22));
+        }}
+    return 1;
+}
+
+float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0)
+{
+    float grad_magn;
+    int i,j;
+#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,grad_magn)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            grad_magn = sqrt(pow(Q1[i*dimY + (j)],2) + pow(Q2[i*dimY + (j)],2) + 2*pow(Q3[i*dimY + (j)],2));
+            grad_magn = grad_magn/alpha0;
+            if (grad_magn > 1.0) {
+                Q1[i*dimY + (j)] = Q1[i*dimY + (j)]/grad_magn;
+                Q2[i*dimY + (j)] = Q2[i*dimY + (j)]/grad_magn;
+                Q3[i*dimY + (j)] = Q3[i*dimY + (j)]/grad_magn;
+            }
+        }}
+    return 1;
+}
+/* Divergence and projection for P*/
+float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau)
+{
+    int i,j;
+    float P_v1, P_v2, div;
+#pragma omp parallel for shared(U,A,P1,P2) private(i,j,P_v1,P_v2,div)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            if (i == 0) P_v1 = (P1[i*dimY + (j)]);
+            else P_v1 = (P1[i*dimY + (j)] - P1[(i-1)*dimY + (j)]);
+            if (j == 0) P_v2 = (P2[i*dimY + (j)]);
+            else  P_v2 = (P2[i*dimY + (j)] - P2[(i)*dimY + (j-1)]);
+            div = P_v1 + P_v2;
+            U[i*dimY + (j)] = (lambda*(U[i*dimY + (j)] + tau*div) + tau*A[i*dimY + (j)])/(lambda + tau);
+        }}
+    return *U;
+}
+/*get updated solution U*/
+float newU(float *U, float *U_old, int dimX, int dimY, int dimZ)
+{
+    int i;
+#pragma omp parallel for shared(U,U_old) private(i)
+    for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2*U[i] - U_old[i];
+    return *U;
+}
+
+/*get update for V*/
+float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau)
+{
+    int i,j;
+    float q1, q11, q2, q22, div1, div2;
+#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i,j, q1, q11, q2, q22, div1, div2)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            /* symmetric boundary conditions (Neuman) */
+            if (i == 0) {
+                q1 = (Q1[i*dimY + (j)]);
+                q11 = (Q3[i*dimY + (j)]);
+            }
+            else {
+                q1 = (Q1[i*dimY + (j)] - Q1[(i-1)*dimY + (j)]);
+                q11 = (Q3[i*dimY + (j)] - Q3[(i-1)*dimY + (j)]);
+            }
+            if (j == 0) {
+                q2 = (Q2[i*dimY + (j)]);
+                q22 = (Q3[i*dimY + (j)]);
+            }
+            else  {
+                q2 = (Q2[i*dimY + (j)] - Q2[(i)*dimY + (j-1)]);
+                q22 = (Q3[i*dimY + (j)] - Q3[(i)*dimY + (j-1)]);
+            }
+            div1 = q1 + q22;
+            div2 = q2 + q11;
+            V1[i*dimY + (j)] = V1[i*dimY + (j)] + tau*(P1[i*dimY + (j)] + div1);
+            V2[i*dimY + (j)] = V2[i*dimY + (j)] + tau*(P2[i*dimY + (j)] + div2);
+        }}
+    return 1;
+}
+/*********************3D *********************/
+
+/*Calculating dual variable P (using forward differences)*/
+float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma)
+{
+    int i,j,k;
+#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k)
+    for(i=0; i<dimX; i++) {
+        for(j=0; j<dimY; j++) {
+            for(k=0; k<dimZ; k++) {
+                /* symmetric boundary conditions (Neuman) */
+                if (i == dimX-1) P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i-1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)])  - V1[dimX*dimY*k + i*dimY + (j)]);
+                else P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i + 1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)])  - V1[dimX*dimY*k + i*dimY + (j)]);
+                if (j == dimY-1) P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j-1)] - U[dimX*dimY*k + i*dimY + (j)])  - V2[dimX*dimY*k + i*dimY + (j)]);
+                else  P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j+1)] - U[dimX*dimY*k + i*dimY + (j)])  - V2[dimX*dimY*k + i*dimY + (j)]);
+                if (k == dimZ-1) P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k-1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)])  - V3[dimX*dimY*k + i*dimY + (j)]);
+                else  P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k+1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)])  - V3[dimX*dimY*k + i*dimY + (j)]);
+            }}}
+    return 1;
+}
\ No newline at end of file
diff --git a/Core/regularizers_CPU/TGV_PD_core.h b/Core/regularizers_CPU/TGV_PD_core.h
new file mode 100644
index 0000000..d5378df
--- /dev/null
+++ b/Core/regularizers_CPU/TGV_PD_core.h
@@ -0,0 +1,67 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+//#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+#include "utils.h"
+
+/* C-OMP implementation of Primal-Dual denoising method for
+* Total Generilized Variation (TGV)-L2 model (2D case only)
+*
+* Input Parameters:
+* 1. Noisy image/volume (2D)
+* 2. lambda - regularization parameter
+* 3. parameter to control first-order term (alpha1)
+* 4. parameter to control the second-order term (alpha0)
+* 5. Number of CP iterations
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+* u0 = Im + .03*randn(size(Im)); % adding noise
+* tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc;
+*
+* to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* References:
+* K. Bredies "Total Generalized Variation"
+*
+* 28.11.16/Harwell
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+/* 2D functions */
+float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma);
+float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1);
+float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma);
+float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0);
+float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau);
+float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau);
+float newU(float *U, float *U_old, int dimX, int dimY, int dimZ);
+//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
+#ifdef __cplusplus
+}
+#endif
diff --git a/Core/regularizers_CPU/utils.c b/Core/regularizers_CPU/utils.c
new file mode 100644
index 0000000..0e83d2c
--- /dev/null
+++ b/Core/regularizers_CPU/utils.c
@@ -0,0 +1,29 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "utils.h"
+
+/* Copy Image */
+float copyIm(float *A, float *U, int dimX, int dimY, int dimZ)
+{
+	int j;
+#pragma omp parallel for shared(A, U) private(j)
+	for (j = 0; j<dimX*dimY*dimZ; j++)  U[j] = A[j];
+	return *U;
+}
\ No newline at end of file
diff --git a/Core/regularizers_CPU/utils.h b/Core/regularizers_CPU/utils.h
new file mode 100644
index 0000000..53463a3
--- /dev/null
+++ b/Core/regularizers_CPU/utils.h
@@ -0,0 +1,32 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+//#include <matrix.h>
+//#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+//#include <stdio.h>
+#include "omp.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
+float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
+#ifdef __cplusplus
+}
+#endif
diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp b/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
new file mode 100644
index 0000000..e5b1ee0
--- /dev/null
+++ b/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
@@ -0,0 +1,114 @@
+#include "mex.h"
+#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include <iostream>
+#include "Diff4th_GPU_kernel.h"
+
+/*
+ * 2D and 3D CUDA implementation of the 4th order PDE denoising model by Hajiaboli
+ *
+ * Reference :
+ * "An anisotropic fourth-order diffusion filter for image noise removal" by M. Hajiaboli
+ * 
+ * Example
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+ * u0 = Im + .05*randn(size(Im)); % adding noise
+ * u = Diff4thHajiaboli_GPU(single(u0), 0.02, 150);
+ * subplot (1,2,1); imshow(u0,[ ]); title('Noisy Image')
+ * subplot (1,2,2); imshow(u,[ ]); title('Denoised Image')
+ *
+ *
+ * Linux/Matlab compilation:
+ * compile in terminal: nvcc -Xcompiler -fPIC -shared -o Diff4th_GPU_kernel.o Diff4th_GPU_kernel.cu
+ * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart Diff4thHajiaboli_GPU.cpp Diff4th_GPU_kernel.o
+ */
+
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[])
+{
+    int numdims, dimZ, size;
+    float *A, *B, *A_L, *B_L;
+    const int *dims;    
+    
+    numdims = mxGetNumberOfDimensions(prhs[0]);
+    dims = mxGetDimensions(prhs[0]);       
+    
+    float sigma = (float)mxGetScalar(prhs[1]); /* edge-preserving parameter */
+    float lambda = (float)mxGetScalar(prhs[2]); /* regularization parameter */
+    int iter = (int)mxGetScalar(prhs[3]); /* iterations number */
+    
+    if (numdims == 2)  {
+        
+        int N, M, Z, i, j;
+        Z = 0; // for the 2D case
+        float tau = 0.01; // time step is sufficiently small for an explicit methods
+        
+        /*Input data*/
+        A = (float*)mxGetData(prhs[0]);        
+        N = dims[0] + 2;
+        M = dims[1] + 2;
+        A_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
+        B_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
+        
+        /*Output data*/
+        B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(dims[0], dims[1], mxSINGLE_CLASS, mxREAL));        
+        
+        // copy A to the bigger A_L with boundaries
+        #pragma omp parallel for shared(A_L, A) private(i,j)
+        for (i=0; i < N; i++) {
+            for (j=0; j < M; j++) {
+                if (((i > 0) && (i < N-1)) &&  ((j > 0) && (j < M-1)))  A_L[i*M+j] = A[(i-1)*(dims[1])+(j-1)];
+            }}
+        
+        // Running CUDA code here
+        Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
+        
+        // copy the processed B_L to a smaller B
+        #pragma omp parallel for shared(B_L, B) private(i,j)
+        for (i=0; i < N; i++) {
+            for (j=0; j < M; j++) {
+                if (((i > 0) && (i < N-1)) &&  ((j > 0) && (j < M-1)))   B[(i-1)*(dims[1])+(j-1)] = B_L[i*M+j];
+            }}
+    }
+    if (numdims == 3)  {
+        //  3D image denoising / regularization
+        int N, M, Z, i, j, k;
+        float tau = 0.0007; // Time Step is small for an explicit methods
+        A = (float*)mxGetData(prhs[0]);
+        N = dims[0] + 2;
+        M = dims[1] + 2;
+        Z = dims[2] + 2;
+        int N_dims[] = {N, M, Z};
+        A_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+        B_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+        
+        /* output data */
+        B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
+        
+        // copy A to the bigger A_L with boundaries
+        #pragma omp parallel for shared(A_L, A) private(i,j,k)
+        for (i=0; i < N; i++) {
+            for (j=0; j < M; j++) {
+                for (k=0; k < Z; k++) {
+                    if (((i > 0) && (i < N-1)) &&  ((j > 0) && (j < M-1)) &&  ((k > 0) && (k < Z-1))) {
+                        A_L[(N*M)*(k)+(i)*M+(j)] = A[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)];
+                    }}}}
+        
+        // Running CUDA kernel here for diffusivity
+        Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
+        
+        // copy the processed B_L to a smaller B
+        #pragma omp parallel for shared(B_L, B) private(i,j,k)
+        for (i=0; i < N; i++) {
+            for (j=0; j < M; j++) {
+                for (k=0; k < Z; k++) {
+                    if (((i > 0) && (i < N-1)) &&  ((j > 0) && (j < M-1)) &&  ((k > 0) && (k < Z-1))) {
+                        B[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)] = B_L[(N*M)*(k)+(i)*M+(j)];
+                    }}}}
+    }
+}
\ No newline at end of file
diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
new file mode 100644
index 0000000..90269bf
--- /dev/null
+++ b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
@@ -0,0 +1,270 @@
+#include <stdio.h>
+#include <stdlib.h>
+#include <memory.h>
+#include "Diff4th_GPU_kernel.h"
+
+#define checkCudaErrors(err)           __checkCudaErrors (err, __FILE__, __LINE__)
+
+inline void __checkCudaErrors(cudaError err, const char *file, const int line)
+{
+    if (cudaSuccess != err)
+    {
+        fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
+                file, line, (int)err, cudaGetErrorString(err));
+        exit(EXIT_FAILURE);
+    }
+}
+
+#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
+#define sizeT (sizeX*sizeY*sizeZ)
+#define epsilon 0.00000001
+
+/////////////////////////////////////////////////
+// 2D Image denosing - Second Step (The second derrivative)
+__global__ void Diff4th2D_derriv(float* B, float* A, float *A0, int N, int M, float sigma, int iter, float tau, float lambda)
+{
+    float gradXXc = 0, gradYYc = 0;
+    int i = blockIdx.x*blockDim.x + threadIdx.x;
+    int j = blockIdx.y*blockDim.y + threadIdx.y;
+    
+    int index = j + i*N;
+    
+    if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) {
+        return;    }
+    
+    int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index;
+    int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index;
+    int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index;
+    int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index;
+    
+    gradXXc = B[indexN] + B[indexS] - 2*B[index] ;
+    gradYYc = B[indexW] + B[indexE] - 2*B[index] ;
+    A[index]  = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc));
+}
+
+// 2D Image denosing - The First Step
+__global__ void Diff4th2D(float* A, float* B, int N, int M, float sigma, int iter, float tau)
+{
+    float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, sq_sum, xy_2,  V_norm, V_orth, c, c_sq;
+    
+    int i = blockIdx.x*blockDim.x + threadIdx.x;
+    int j = blockIdx.y*blockDim.y + threadIdx.y;
+    
+    int index = j + i*N;
+    
+    V_norm = 0.0f; V_orth = 0.0f;
+    
+    if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) {
+        return;    }
+    
+    int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index;
+    int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index;
+    int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index;
+    int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index;
+    int indexNW = (j-1)+(i-1)*(N); if (A[indexNW] == 0) indexNW = index;
+    int indexNE = (j+1)+(i-1)*(N); if (A[indexNE] == 0) indexNE = index;
+    int indexWS = (j-1)+(i+1)*(N); if (A[indexWS] == 0) indexWS = index;
+    int indexES = (j+1)+(i+1)*(N); if (A[indexES] == 0) indexES = index;
+    
+    gradX = 0.5f*(A[indexN]-A[indexS]);
+    gradX_sq = gradX*gradX;
+    gradXX = A[indexN] + A[indexS] - 2*A[index];
+    
+    gradY = 0.5f*(A[indexW]-A[indexE]);
+    gradY_sq = gradY*gradY;
+    gradYY = A[indexW] + A[indexE] - 2*A[index];
+    
+    gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]);
+    xy_2 = 2.0f*gradX*gradY*gradXY;
+    sq_sum =  gradX_sq + gradY_sq;
+    
+    if (sq_sum <= epsilon) {
+        V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/epsilon;
+        V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/epsilon; }
+    else  {
+        V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/sq_sum;
+        V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/sq_sum;  }
+    
+    c = 1.0f/(1.0f + sq_sum/sigma);
+    c_sq = c*c;
+    B[index] =  c_sq*V_norm + c*V_orth;
+}
+
+/////////////////////////////////////////////////
+// 3D data parocerssing
+__global__ void Diff4th3D_derriv(float *B, float *A, float *A0, int N, int M, int Z, float sigma, int iter, float tau, float lambda)
+{
+    float gradXXc = 0, gradYYc = 0, gradZZc = 0;
+    int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
+    int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
+    int zIndex = blockDim.z * blockIdx.z + threadIdx.z;
+    
+    int index = xIndex + M*yIndex + N*M*zIndex;
+    
+    if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) {
+        return;    }
+    
+    int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index;
+    int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index;
+    int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index;
+    int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index;
+    int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index;
+    int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index;
+    
+    gradXXc = B[indexN] + B[indexS] - 2*B[index] ;
+    gradYYc = B[indexW] + B[indexE] - 2*B[index] ;
+    gradZZc = B[indexU] + B[indexD] - 2*B[index] ;   
+        
+    A[index]  = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc + gradZZc));    
+}
+
+__global__ void Diff4th3D(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau)
+{
+    float gradX, gradX_sq, gradY, gradY_sq, gradZ, gradZ_sq, gradXX, gradYY, gradZZ, gradXY, gradXZ, gradYZ, sq_sum, xy_2, xyz_1, xyz_2, V_norm, V_orth, c, c_sq;
+    
+    int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
+    int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
+    int zIndex = blockDim.z * blockIdx.z + threadIdx.z;
+    
+    int index = xIndex + M*yIndex + N*M*zIndex;
+    V_norm = 0.0f; V_orth = 0.0f;
+    
+    if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) {
+        return;    }
+    
+    B[index] = 0;
+    
+    int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index;
+    int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index;
+    int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index;
+    int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index;
+    int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index;
+    int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index;
+    
+    int indexNW = (xIndex-1) + M*(yIndex-1) + N*M*zIndex;  if (A[indexNW] == 0) indexNW = index;
+    int indexNE = (xIndex-1) + M*(yIndex+1) + N*M*zIndex;  if (A[indexNE] == 0) indexNE = index;
+    int indexWS =  (xIndex+1) + M*(yIndex-1) + N*M*zIndex; if (A[indexWS] == 0) indexWS = index;
+    int indexES = (xIndex+1) + M*(yIndex+1) + N*M*zIndex;  if (A[indexES] == 0) indexES = index;
+    
+    int indexUW = (xIndex-1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUW] == 0) indexUW = index;
+    int indexUE = (xIndex+1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUE] == 0) indexUE = index;
+    int indexDW =  (xIndex-1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDW] == 0) indexDW = index;
+    int indexDE = (xIndex+1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDE] == 0) indexDE = index;
+    
+    int indexUN = (xIndex) + M*(yIndex-1) + N*M*(zIndex-1);  if (A[indexUN] == 0) indexUN = index;
+    int indexUS = (xIndex) + M*(yIndex+1) + N*M*(zIndex-1);  if (A[indexUS] == 0) indexUS = index;
+    int indexDN =  (xIndex) + M*(yIndex-1) + N*M*(zIndex+1); if (A[indexDN] == 0) indexDN = index;
+    int indexDS = (xIndex) + M*(yIndex+1) + N*M*(zIndex+1);  if (A[indexDS] == 0) indexDS = index;
+    
+    gradX = 0.5f*(A[indexN]-A[indexS]);
+    gradX_sq = gradX*gradX;
+    gradXX = A[indexN] + A[indexS] - 2*A[index];
+    
+    gradY = 0.5f*(A[indexW]-A[indexE]);
+    gradY_sq = gradY*gradY;
+    gradYY = A[indexW] + A[indexE] - 2*A[index];
+    
+    gradZ = 0.5f*(A[indexU]-A[indexD]);
+    gradZ_sq = gradZ*gradZ;
+    gradZZ = A[indexU] + A[indexD] - 2*A[index];
+    
+    gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]);
+    gradXZ = 0.25f*(A[indexUW] - A[indexUE] - A[indexDW] + A[indexDE]);
+    gradYZ = 0.25f*(A[indexUN] - A[indexUS] - A[indexDN] + A[indexDS]);
+    
+    xy_2  = 2.0f*gradX*gradY*gradXY;
+    xyz_1 = 2.0f*gradX*gradZ*gradXZ;
+    xyz_2 = 2.0f*gradY*gradZ*gradYZ;
+    
+    sq_sum =  gradX_sq + gradY_sq + gradZ_sq;
+    
+    if (sq_sum <= epsilon) {
+        V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/epsilon;
+        V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/epsilon;  }
+    else  {
+        V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/sq_sum;
+        V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/sq_sum;  }
+    
+    c = 1;
+    if ((1.0f + sq_sum/sigma) != 0.0f)  {c = 1.0f/(1.0f + sq_sum/sigma);}
+    
+    c_sq = c*c;
+    B[index] =  c_sq*V_norm + c*V_orth;
+}
+
+/******************************************************/
+/********* HOST FUNCTION*************/
+extern "C" void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda)
+{
+     int deviceCount = -1; // number of devices
+    cudaGetDeviceCount(&deviceCount);
+    if (deviceCount == 0) {
+        fprintf(stderr, "No CUDA devices found\n");
+        return;
+    }    
+    
+      int BLKXSIZE, BLKYSIZE,BLKZSIZE;
+      float *Ad, *Bd, *Cd;
+      sigma = sigma*sigma;
+    
+    if (Z == 0){
+        // 4th order diffusion for 2D case     
+        BLKXSIZE = 8;
+        BLKYSIZE = 16;
+        
+        dim3 dimBlock(BLKXSIZE,BLKYSIZE);
+        dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE));
+        
+        checkCudaErrors(cudaMalloc((void**)&Ad,N*M*sizeof(float)));
+        checkCudaErrors(cudaMalloc((void**)&Bd,N*M*sizeof(float)));
+        checkCudaErrors(cudaMalloc((void**)&Cd,N*M*sizeof(float)));
+        
+        checkCudaErrors(cudaMemcpy(Ad,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
+        checkCudaErrors(cudaMemcpy(Bd,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
+        checkCudaErrors(cudaMemcpy(Cd,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
+        
+        int n = 1;
+        while (n <= iter) {
+            Diff4th2D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, sigma, iter, tau);
+            cudaDeviceSynchronize();
+            checkCudaErrors( cudaPeekAtLastError() );
+            Diff4th2D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, sigma, iter, tau, lambda);
+            cudaDeviceSynchronize();
+            checkCudaErrors( cudaPeekAtLastError() );
+            n++;
+        }
+        checkCudaErrors(cudaMemcpy(B,Bd,N*M*sizeof(float),cudaMemcpyDeviceToHost));
+        cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
+    }
+    
+    if (Z != 0){
+        // 4th order diffusion for 3D case
+        BLKXSIZE = 8;
+        BLKYSIZE = 8;
+        BLKZSIZE = 8;        
+        
+        dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
+        dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKXSIZE));
+        
+        checkCudaErrors(cudaMalloc((void**)&Ad,N*M*Z*sizeof(float)));
+        checkCudaErrors(cudaMalloc((void**)&Bd,N*M*Z*sizeof(float)));
+        checkCudaErrors(cudaMalloc((void**)&Cd,N*M*Z*sizeof(float)));
+        
+        checkCudaErrors(cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
+        checkCudaErrors(cudaMemcpy(Bd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));        
+        checkCudaErrors(cudaMemcpy(Cd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
+        
+        int n = 1;
+        while (n <= iter) {
+            Diff4th3D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, Z, sigma, iter, tau);
+            cudaDeviceSynchronize();
+            checkCudaErrors( cudaPeekAtLastError() );
+            Diff4th3D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, Z, sigma, iter, tau, lambda);
+            cudaDeviceSynchronize();
+            checkCudaErrors( cudaPeekAtLastError() );
+            n++;
+        }
+        checkCudaErrors(cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost));
+        cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
+    }
+}
\ No newline at end of file
diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
new file mode 100644
index 0000000..cfbb45a
--- /dev/null
+++ b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
@@ -0,0 +1,6 @@
+#ifndef __DIFF_HO_H_
+#define __DIFF_HO_H_
+
+extern "C" void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda);
+
+#endif 
diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp b/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp
new file mode 100644
index 0000000..858b865
--- /dev/null
+++ b/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp
@@ -0,0 +1,171 @@
+#include "mex.h"
+#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include <iostream>
+#include "NLM_GPU_kernel.h"
+
+/* CUDA implementation of the patch-based (PB) regularization  for 2D and 3D images/volumes  
+ * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
+ * 
+ * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
+ *             2. Kazantsev D. at. all "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
+ *
+ * Input Parameters (mandatory):
+ * 1. Image/volume (2D/3D)
+ * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
+ * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
+ * 4. h - parameter for the PB penalty function
+ * 5. lambda - regularization parameter 
+
+ * Output:
+ * 1. regularized (denoised) Image/volume (N x N x N)
+ *
+ * In matlab check what kind of GPU you have with "gpuDevice" command,
+ * then set your ComputeCapability, here I use -arch compute_35
+ *
+ * Quick 2D denoising example in Matlab:   
+   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+   ImDen = NLM_GPU(single(u0), 3, 2, 0.15, 1);
+ 
+ * Linux/Matlab compilation:
+ * compile in terminal: nvcc -Xcompiler -fPIC -shared -o NLM_GPU_kernel.o NLM_GPU_kernel.cu
+ * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart NLM_GPU.cpp NLM_GPU_kernel.o
+ *
+ * D. Kazantsev 
+ * 2014-17
+ * Harwell/Manchester UK
+ */
+
+float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY,  int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
+
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[])
+{
+    int N, M, Z, i_n, j_n, k_n, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop, count, SearchW_full, SimilW_full;
+    const int  *dims;
+    float *A, *B=NULL, *Ap=NULL, *Bp=NULL, *Eucl_Vec, h, h2, lambda, val, denh2;
+    
+    numdims = mxGetNumberOfDimensions(prhs[0]);
+    dims = mxGetDimensions(prhs[0]);
+    
+    N = dims[0];
+    M = dims[1];
+    Z = dims[2];
+    
+    if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input should be 2D image or 3D volume");}
+    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
+    
+    if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
+    
+    /*Handling inputs*/
+    A  = (float *) mxGetData(prhs[0]);    /* the image to regularize/filter */
+    SearchW_real  = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
+    SimilW =  (int) mxGetScalar(prhs[2]);  /* the similarity window ratio */
+    h =  (float) mxGetScalar(prhs[3]);  /* parameter for the PB filtering function */
+    lambda = (float) mxGetScalar(prhs[4]);
+    
+    if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
+      
+    SearchW = SearchW_real + 2*SimilW;
+    
+    SearchW_full = 2*SearchW + 1; /* the full searching window  size */
+    SimilW_full = 2*SimilW + 1;   /* the full similarity window  size */
+    h2 = h*h;
+    
+    padXY = SearchW + 2*SimilW; /* padding sizes */
+    newsizeX = N + 2*(padXY); /* the X size of the padded array */
+    newsizeY = M + 2*(padXY); /* the Y size of the padded array */
+    newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
+    int N_dims[] = {newsizeX, newsizeY, newsizeZ};
+    
+    /******************************2D case ****************************/
+    if (numdims == 2) {
+        /*Handling output*/
+        B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
+        /*allocating memory for the padded arrays */
+        Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+        Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+        Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
+        
+        /*Gaussian kernel */
+        count = 0;
+        for(i_n=-SimilW; i_n<=SimilW; i_n++) {
+            for(j_n=-SimilW; j_n<=SimilW; j_n++) {
+                val = (float)(i_n*i_n + j_n*j_n)/(2*SimilW*SimilW);
+                Eucl_Vec[count] = exp(-val);
+                count = count + 1;
+            }} /*main neighb loop */
+        
+        /**************************************************************************/
+        /*Perform padding of image A to the size of [newsizeX * newsizeY] */
+        switchpad_crop = 0; /*padding*/
+        pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+        
+        /* Do PB regularization with the padded array  */
+        NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, 0, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
+        
+        switchpad_crop = 1; /*cropping*/
+        pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+    }
+    else
+    {
+        /******************************3D case ****************************/
+        /*Handling output*/
+        B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
+        /*allocating memory for the padded arrays */
+        Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+        Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+        Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
+        
+        /*Gaussian kernel */
+        count = 0;
+        for(i_n=-SimilW; i_n<=SimilW; i_n++) {
+            for(j_n=-SimilW; j_n<=SimilW; j_n++) {
+                for(k_n=-SimilW; k_n<=SimilW; k_n++) {
+                    val = (float)(i_n*i_n + j_n*j_n + k_n*k_n)/(2*SimilW*SimilW*SimilW);
+                    Eucl_Vec[count] = exp(-val);
+                    count = count + 1;
+                }}} /*main neighb loop */
+        /**************************************************************************/
+        /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
+        switchpad_crop = 0; /*padding*/
+        pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+        
+        /* Do PB regularization with the padded array  */
+        NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, newsizeZ, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
+        
+        switchpad_crop = 1; /*cropping*/
+        pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+    } /*end else ndims*/
+}
+
+float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
+{
+    /* padding-cropping function */
+    int i,j,k;    
+    if (NewSizeZ > 1) {    
+           for (i=0; i < NewSizeX; i++) {
+            for (j=0; j < NewSizeY; j++) {
+              for (k=0; k < NewSizeZ; k++) {
+                if (((i >= padXY) && (i < NewSizeX-padXY)) &&  ((j >= padXY) && (j < NewSizeY-padXY)) &&  ((k >= padXY) && (k < NewSizeZ-padXY))) {
+                    if (switchpad_crop == 0)  Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
+                    else  Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
+                }
+            }}}   
+    }
+    else {
+        for (i=0; i < NewSizeX; i++) {
+            for (j=0; j < NewSizeY; j++) {
+                if (((i >= padXY) && (i < NewSizeX-padXY)) &&  ((j >= padXY) && (j < NewSizeY-padXY))) {
+                    if (switchpad_crop == 0)  Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
+                    else  Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
+                }
+            }}
+    }
+    return *Ap;
+}
\ No newline at end of file
diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
new file mode 100644
index 0000000..1089539
--- /dev/null
+++ b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
@@ -0,0 +1,239 @@
+#include <stdio.h>
+#include <stdlib.h>
+#include <memory.h>
+#include "NLM_GPU_kernel.h"
+
+#define checkCudaErrors(err)           __checkCudaErrors (err, __FILE__, __LINE__)
+
+inline void __checkCudaErrors(cudaError err, const char *file, const int line)
+{
+    if (cudaSuccess != err)
+    {
+        fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
+                file, line, (int)err, cudaGetErrorString(err));
+        exit(EXIT_FAILURE);
+    }
+}
+
+extern __shared__ float sharedmem[];
+
+// run PB den kernel here
+__global__ void NLM_kernel(float *Ad, float* Bd, float *Eucl_Vec_d, int N, int M, int Z, int SearchW, int SimilW, int SearchW_real, int SearchW_full, int SimilW_full, int padXY, float h2, float lambda,  dim3 imagedim, dim3 griddim, dim3 kerneldim, dim3 sharedmemdim, int nUpdatePerThread, float neighborsize)
+{
+    
+    int  i1, j1, k1, i2, j2, k2, i3, j3, k3, i_l, j_l, k_l, count;
+    float value, Weight_norm, normsum, Weight;
+    
+    int bidx = blockIdx.x;
+    int bidy = blockIdx.y%griddim.y;
+    int bidz = (int)((blockIdx.y)/griddim.y);
+    
+    // global index for block endpoint
+    int beidx = __mul24(bidx,blockDim.x);
+    int beidy = __mul24(bidy,blockDim.y);
+    int beidz = __mul24(bidz,blockDim.z);
+    
+    int tid = __mul24(threadIdx.z,__mul24(blockDim.x,blockDim.y)) +
+            __mul24(threadIdx.y,blockDim.x) + threadIdx.x;
+    
+    #ifdef __DEVICE_EMULATION__
+            printf("tid : %d", tid);
+    #endif
+            
+    // update shared memory
+    int nthreads = blockDim.x*blockDim.y*blockDim.z;
+    int sharedMemSize = sharedmemdim.x * sharedmemdim.y * sharedmemdim.z;
+    for(int i=0; i<nUpdatePerThread; i++)
+    {
+        int sid = tid + i*nthreads; // index in shared memory
+        if (sid < sharedMemSize)
+        {
+            // global x/y/z index in volume
+            int gidx, gidy, gidz;
+            int sidx, sidy, sidz, tid;
+            
+            sidz = sid / (sharedmemdim.x*sharedmemdim.y);
+            tid  = sid - sidz*(sharedmemdim.x*sharedmemdim.y);
+            sidy = tid / (sharedmemdim.x);
+            sidx = tid - sidy*(sharedmemdim.x);
+            
+            gidx = (int)sidx - (int)kerneldim.x + (int)beidx;
+            gidy = (int)sidy - (int)kerneldim.y + (int)beidy;
+            gidz = (int)sidz - (int)kerneldim.z + (int)beidz;
+            
+            // Neumann boundary condition
+            int cx = (int) min(max(0,gidx),imagedim.x-1);
+            int cy = (int) min(max(0,gidy),imagedim.y-1);
+            int cz = (int) min(max(0,gidz),imagedim.z-1);
+            
+            int gid = cz*imagedim.x*imagedim.y + cy*imagedim.x + cx;
+            
+            sharedmem[sid] = Ad[gid];
+        }
+    }
+    __syncthreads();
+    
+    // global index of the current voxel in the input volume
+    int idx = beidx + threadIdx.x;
+    int idy = beidy + threadIdx.y;
+    int idz = beidz + threadIdx.z;
+    
+    if (Z == 1) {
+        /* 2D case */
+        /*checking boundaries to be within the image and avoid padded spaces */
+        if( idx >= padXY && idx < (imagedim.x - padXY) &&
+                idy >= padXY && idy < (imagedim.y - padXY))
+        {
+            int i_centr = threadIdx.x + (SearchW); /*indices of the centrilized (main) pixel */
+            int j_centr = threadIdx.y + (SearchW); /*indices of the centrilized (main) pixel */
+            
+            if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M)) {
+                
+                Weight_norm = 0; value = 0.0;
+                /* Massive Search window loop */
+                for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) {
+                    for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) {
+                        /* if inside the searching window */
+                        count = 0; normsum = 0.0;
+                        for(i_l=-SimilW; i_l<=SimilW; i_l++) {
+                            for(j_l=-SimilW; j_l<=SimilW; j_l++) {
+                                i2 = i1+i_l; j2 = j1+j_l;
+                                i3 = i_centr+i_l; j3 = j_centr+j_l;  /*coordinates of the inner patch loop */                                
+                                if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M)) {
+                                       if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M)) {
+                                            normsum += Eucl_Vec_d[count]*pow((sharedmem[(j3)*sharedmemdim.x+(i3)] - sharedmem[j2*sharedmemdim.x+i2]), 2);
+                                            }}
+                                        count++;
+                                }}
+                                if (normsum != 0) Weight = (expf(-normsum/h2));
+                                else Weight = 0.0;
+                                Weight_norm += Weight;
+                                value += sharedmem[j1*sharedmemdim.x+i1]*Weight;
+                            }}      
+                                
+                if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm;
+                else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx];
+            }
+        }      /*boundary conditions end*/
+    }
+    else {
+        /*3D case*/
+        /*checking boundaries to be within the image and avoid padded spaces */
+        if( idx >= padXY && idx < (imagedim.x - padXY) &&
+                idy >= padXY && idy < (imagedim.y - padXY) &&
+                idz >= padXY && idz < (imagedim.z - padXY) )
+        {
+            int i_centr = threadIdx.x + SearchW; /*indices of the centrilized (main) pixel */
+            int j_centr = threadIdx.y + SearchW; /*indices of the centrilized (main) pixel */
+            int k_centr = threadIdx.z + SearchW; /*indices of the centrilized (main) pixel */
+            
+            if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M) && (k_centr > 0) && (k_centr < Z)) {
+                
+                Weight_norm = 0; value = 0.0;
+                /* Massive Search window loop */
+                for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) {
+                    for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) {
+                        for(k1 = k_centr - SearchW_real ; k1<= k_centr + SearchW_real ; k1++) {
+                            /* if inside the searching window */
+                            count = 0; normsum = 0.0;
+                            for(i_l=-SimilW; i_l<=SimilW; i_l++) {
+                                for(j_l=-SimilW; j_l<=SimilW; j_l++) {
+                                    for(k_l=-SimilW; k_l<=SimilW; k_l++) {
+                                        i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
+                                        i3 = i_centr+i_l; j3 = j_centr+j_l; k3 = k_centr+k_l;   /*coordinates of the inner patch loop */                              
+                                                    if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M) && (k2 > 0) && (k2 < Z)) {
+                                                        if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M) && (k3 > 0) && (k3 < Z)) {
+                                                            normsum += Eucl_Vec_d[count]*pow((sharedmem[(k3)*sharedmemdim.x*sharedmemdim.y + (j3)*sharedmemdim.x+(i3)] - sharedmem[(k2)*sharedmemdim.x*sharedmemdim.y + j2*sharedmemdim.x+i2]), 2);
+                                                        }}
+                                                    count++;
+                                                }}}
+                                       if (normsum != 0) Weight = (expf(-normsum/h2));
+                                       else Weight = 0.0;
+                                       Weight_norm += Weight;
+                                       value += sharedmem[k1*sharedmemdim.x*sharedmemdim.y + j1*sharedmemdim.x+i1]*Weight;                                                                
+                        }}}      /* BIG search window loop end*/
+                
+               
+                if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm;
+                else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx];
+            }
+        }      /* boundary conditions end */
+    }
+}
+        
+/////////////////////////////////////////////////
+// HOST FUNCTION
+extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float h2, float lambda)
+{
+    int deviceCount = -1; // number of devices
+    cudaGetDeviceCount(&deviceCount);
+    if (deviceCount == 0) {
+        fprintf(stderr, "No CUDA devices found\n");
+        return;
+    }
+    
+//     cudaDeviceReset();
+    
+    int padXY, SearchW_full, SimilW_full,  blockWidth, blockHeight, blockDepth, nBlockX, nBlockY, nBlockZ, kernel_depth;
+    float *Ad, *Bd, *Eucl_Vec_d;
+    
+    if (dimension == 2) {
+        blockWidth  = 16;
+        blockHeight = 16;
+        blockDepth  = 1;
+        Z = 1;
+        kernel_depth = 0;
+    }
+    else {
+        blockWidth  = 8;
+        blockHeight = 8;
+        blockDepth  = 8;
+        kernel_depth = SearchW;
+    }
+    
+    // compute how many blocks are needed
+    nBlockX = ceil((float)N / (float)blockWidth);
+    nBlockY = ceil((float)M / (float)blockHeight);
+    nBlockZ = ceil((float)Z / (float)blockDepth);
+    
+    dim3 dimGrid(nBlockX,nBlockY*nBlockZ);
+    dim3 dimBlock(blockWidth, blockHeight, blockDepth);
+    dim3 imagedim(N,M,Z);
+    dim3 griddim(nBlockX,nBlockY,nBlockZ);
+    
+    dim3 kerneldim(SearchW,SearchW,kernel_depth);
+    dim3 sharedmemdim((SearchW*2)+blockWidth,(SearchW*2)+blockHeight,(kernel_depth*2)+blockDepth);
+    int sharedmemsize = sizeof(float)*sharedmemdim.x*sharedmemdim.y*sharedmemdim.z;
+    int updateperthread = ceil((float)(sharedmemdim.x*sharedmemdim.y*sharedmemdim.z)/(float)(blockWidth*blockHeight*blockDepth));
+    float neighborsize = (2*SearchW+1)*(2*SearchW+1)*(2*kernel_depth+1);
+    
+    padXY = SearchW + 2*SimilW; /* padding sizes */
+    
+    SearchW_full = 2*SearchW + 1; /* the full searching window  size */
+    SimilW_full = 2*SimilW + 1;   /* the full similarity window  size */
+    
+    /*allocate space for images on device*/
+    checkCudaErrors( cudaMalloc((void**)&Ad,N*M*Z*sizeof(float)) );
+    checkCudaErrors( cudaMalloc((void**)&Bd,N*M*Z*sizeof(float)) );
+    /*allocate space for vectors on device*/
+    if (dimension == 2) {
+        checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*sizeof(float)) );
+        checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) );
+    }
+    else {
+        checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*SimilW_full*sizeof(float)) );
+        checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) );
+    }
+    
+    /* copy data from the host to device */
+    checkCudaErrors( cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice) );
+    
+    // Run CUDA kernel here
+    NLM_kernel<<<dimGrid,dimBlock,sharedmemsize>>>(Ad, Bd, Eucl_Vec_d, M, N, Z, SearchW, SimilW, SearchW_real, SearchW_full, SimilW_full, padXY, h2, lambda, imagedim, griddim, kerneldim, sharedmemdim, updateperthread, neighborsize);
+    
+    checkCudaErrors( cudaPeekAtLastError() );
+//     gpuErrchk( cudaDeviceSynchronize() );
+    
+    checkCudaErrors( cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost) );
+    cudaFree(Ad); cudaFree(Bd); cudaFree(Eucl_Vec_d);
+}
diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
new file mode 100644
index 0000000..bc9d4a3
--- /dev/null
+++ b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
@@ -0,0 +1,6 @@
+#ifndef __NLMREG_KERNELS_H_
+#define __NLMREG_KERNELS_H_
+
+extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float denh2, float lambda);
+
+#endif 
diff --git a/Core/test/test_regularizer.cpp b/Core/test/test_regularizer.cpp
new file mode 100644
index 0000000..6a9225c
--- /dev/null
+++ b/Core/test/test_regularizer.cpp
@@ -0,0 +1,3 @@
+unsigned char *rawData = (unsigned char *)malloc(sizeof(unsigned char) * sampleSize * nVertices);
+
+long nSamplesRead = fread(rawData, sizeof(unsigned char), nVertices, inFile);		//	read in the block of data
\ No newline at end of file
diff --git a/Core/test/test_regularizer.h b/Core/test/test_regularizer.h
new file mode 100644
index 0000000..e69de29
diff --git a/Wrappers/CMakeLists.txt b/Wrappers/CMakeLists.txt
new file mode 100644
index 0000000..cbe2fec
--- /dev/null
+++ b/Wrappers/CMakeLists.txt
@@ -0,0 +1,14 @@
+#   Copyright 2017 Edoardo Pasca
+#
+#   Licensed under the Apache License, Version 2.0 (the "License");
+#   you may not use this file except in compliance with the License.
+#   You may obtain a copy of the License at
+#
+#       http://www.apache.org/licenses/LICENSE-2.0
+#
+#   Unless required by applicable law or agreed to in writing, software
+#   distributed under the License is distributed on an "AS IS" BASIS,
+#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#   See the License for the specific language governing permissions and
+#   limitations under the License.
+add_subdirectory(Python)
\ No newline at end of file
diff --git a/Wrappers/Matlab/FISTA_REC.m b/Wrappers/Matlab/FISTA_REC.m
new file mode 100644
index 0000000..d717a03
--- /dev/null
+++ b/Wrappers/Matlab/FISTA_REC.m
@@ -0,0 +1,704 @@
+function [X,  output] = FISTA_REC(params)
+
+% <<<< FISTA-based reconstruction routine using ASTRA-toolbox >>>>
+% This code solves regularised PWLS problem using FISTA approach.
+% The code contains multiple regularisation penalties as well as it can be
+% accelerated by using ordered-subset version. Various projection
+% geometries supported.
+
+% DISCLAIMER
+% It is recommended to use ASTRA version 1.8 or later in order to avoid
+% crashing due to GPU memory overflow for big datasets
+
+% ___Input___:
+% params.[] file:
+%----------------General Parameters------------------------
+%       - .proj_geom (geometry of the projector) [required]
+%       - .vol_geom (geometry of the reconstructed object) [required]
+%       - .sino (2D or 3D sinogram) [required]
+%       - .iterFISTA (iterations for the main loop, default 40)
+%       - .L_const (Lipschitz constant, default Power method)                                                                                                    )
+%       - .X_ideal (ideal image, if given)
+%       - .weights (statisitcal weights for the PWLS model, size of the sinogram)
+%       - .fidelity (use 'studentt' fidelity)
+%       - .ROI (Region-of-interest, only if X_ideal is given)
+%       - .initialize (a 'warm start' using SIRT method from ASTRA)
+%----------------Regularization choices------------------------
+%       1 .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
+%       2 .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
+%       3 .Regul_LambdaLLT (Higher order LLT regularization parameter)
+%          3.1 .Regul_tauLLT (time step parameter for LLT (HO) term)
+%       4 .Regul_LambdaPatchBased_CPU (Patch-based nonlocal regularization parameter)
+%          4.1  .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window))
+%          4.2  .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window))
+%          4.3  .Regul_PB_h (PB penalty function threshold)
+%       5 .Regul_LambdaPatchBased_GPU (Patch-based nonlocal regularization parameter)
+%          5.1  .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window))
+%          5.2  .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window))
+%          5.3  .Regul_PB_h (PB penalty function threshold)
+%       6 .Regul_LambdaDiffHO (Higher-Order Diffusion regularization parameter)
+%          6.1  .Regul_DiffHO_EdgePar (edge-preserving noise related parameter)
+%       7 .Regul_LambdaTGV (Total Generalized variation regularization parameter)
+%       - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
+%       - .Regul_Iterations (iterations for the selected penalty, default 25)
+%       - .Regul_Dimension ('2D' or '3D' way to apply regularization, '3D' is the default)
+%----------------Ring removal------------------------
+%       - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
+%       - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
+%----------------Visualization parameters------------------------
+%       - .show (visualize reconstruction 1/0, (0 default))
+%       - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
+%       - .slice (for 3D volumes - slice number to imshow)
+% ___Output___:
+% 1. X - reconstructed image/volume
+% 2. output - a structure with
+%    - .Resid_error - residual error (if X_ideal is given)
+%    - .objective: value of the objective function
+%    - .L_const: Lipshitz constant to avoid recalculations
+
+% References:
+% 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
+% Problems" by A. Beck and M Teboulle
+% 2. "Ring artifacts correction in compressed sensing..." by P. Paleo
+% 3. "A novel tomographic reconstruction method based on the robust
+% Student's t function for suppressing data outliers" D. Kazantsev et.al.
+% D. Kazantsev, 2016-17
+
+% Dealing with input parameters
+if (isfield(params,'proj_geom') == 0)
+    error('%s \n', 'Please provide ASTRA projection geometry - proj_geom');
+else
+    proj_geom = params.proj_geom;
+end
+if (isfield(params,'vol_geom') == 0)
+    error('%s \n', 'Please provide ASTRA object geometry - vol_geom');
+else
+    vol_geom = params.vol_geom;
+end
+N = params.vol_geom.GridColCount;
+if (isfield(params,'sino'))
+    sino = params.sino;
+    [Detectors, anglesNumb, SlicesZ] = size(sino);
+    fprintf('%s %i %s %i %s %i %s \n', 'Sinogram has a dimension of', Detectors, 'detectors;', anglesNumb, 'projections;', SlicesZ, 'vertical slices.');
+else
+    error('%s \n', 'Please provide a sinogram');
+end
+if (isfield(params,'iterFISTA'))
+    iterFISTA = params.iterFISTA;
+else
+    iterFISTA = 40;
+end
+if (isfield(params,'weights'))
+    weights = params.weights;
+else
+    weights = ones(size(sino));
+end
+if (isfield(params,'fidelity'))
+    studentt = 0;
+    if (strcmp(params.fidelity,'studentt') == 1)
+        studentt = 1;
+    end
+else
+    studentt = 0;
+end
+if (isfield(params,'L_const'))
+    L_const = params.L_const;
+else
+    % using Power method (PM) to establish L constant
+    fprintf('%s %s %s \n', 'Calculating Lipshitz constant for',proj_geom.type, 'beam geometry...');
+    if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
+        % for 2D geometry we can do just one selected slice
+        niter = 15; % number of iteration for the PM
+        x1 = rand(N,N,1);
+        sqweight = sqrt(weights(:,:,1));
+        [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom);
+        y = sqweight.*y';
+        astra_mex_data2d('delete', sino_id);
+        for i = 1:niter
+            [x1] = astra_create_backprojection_cuda((sqweight.*y)', proj_geom, vol_geom);
+            s = norm(x1(:));
+            x1 = x1./s;
+            [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom);
+            y = sqweight.*y';
+            astra_mex_data2d('delete', sino_id);
+        end
+    elseif (strcmp(proj_geom.type,'cone') || strcmp(proj_geom.type,'parallel3d') || strcmp(proj_geom.type,'parallel3d_vec') || strcmp(proj_geom.type,'cone_vec'))
+        % 3D geometry
+        niter = 8; % number of iteration for PM
+        x1 = rand(N,N,SlicesZ);
+        sqweight = sqrt(weights);
+        [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom);
+        y = sqweight.*y;
+        astra_mex_data3d('delete', sino_id);
+        
+        for i = 1:niter
+            [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
+            s = norm(x1(:));
+            x1 = x1/s;
+            [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom);
+            y = sqweight.*y;
+            astra_mex_data3d('delete', sino_id);
+            astra_mex_data3d('delete', id);
+        end
+        clear x1
+    else
+        error('%s \n', 'No suitable geometry has been found!');
+    end
+    L_const = s;
+end
+if (isfield(params,'X_ideal'))
+    X_ideal = params.X_ideal;
+else
+    X_ideal = 'none';
+end
+if (isfield(params,'ROI'))
+    ROI = params.ROI;
+else
+    ROI = find(X_ideal>=0.0);
+end
+if (isfield(params,'Regul_Lambda_FGPTV'))
+    lambdaFGP_TV = params.Regul_Lambda_FGPTV;
+else
+    lambdaFGP_TV = 0;
+end
+if (isfield(params,'Regul_Lambda_SBTV'))
+    lambdaSB_TV = params.Regul_Lambda_SBTV;
+else
+    lambdaSB_TV = 0;
+end
+if (isfield(params,'Regul_tol'))
+    tol = params.Regul_tol;
+else
+    tol = 1.0e-05;
+end
+if (isfield(params,'Regul_Iterations'))
+    IterationsRegul = params.Regul_Iterations;
+else
+    IterationsRegul = 45;
+end
+if (isfield(params,'Regul_LambdaLLT'))
+    lambdaHO = params.Regul_LambdaLLT;
+else
+    lambdaHO = 0;
+end
+if (isfield(params,'Regul_iterHO'))
+    iterHO = params.Regul_iterHO;
+else
+    iterHO = 50;
+end
+if (isfield(params,'Regul_tauLLT'))
+    tauHO = params.Regul_tauLLT;
+else
+    tauHO = 0.0001;
+end
+if (isfield(params,'Regul_LambdaPatchBased_CPU'))
+    lambdaPB = params.Regul_LambdaPatchBased_CPU;
+else
+    lambdaPB = 0;
+end
+if (isfield(params,'Regul_LambdaPatchBased_GPU'))
+    lambdaPB_GPU = params.Regul_LambdaPatchBased_GPU;
+else
+    lambdaPB_GPU = 0;
+end
+if (isfield(params,'Regul_PB_SearchW'))
+    SearchW = params.Regul_PB_SearchW;
+else
+    SearchW = 3; % default
+end
+if (isfield(params,'Regul_PB_SimilW'))
+    SimilW = params.Regul_PB_SimilW;
+else
+    SimilW = 1; % default
+end
+if (isfield(params,'Regul_PB_h'))
+    h_PB = params.Regul_PB_h;
+else
+    h_PB = 0.1; % default
+end
+if (isfield(params,'Regul_LambdaDiffHO'))
+    LambdaDiff_HO = params.Regul_LambdaDiffHO;
+else
+    LambdaDiff_HO = 0;
+end
+if (isfield(params,'Regul_DiffHO_EdgePar'))
+    LambdaDiff_HO_EdgePar = params.Regul_DiffHO_EdgePar;
+else
+    LambdaDiff_HO_EdgePar = 0.01;
+end
+if (isfield(params,'Regul_LambdaTGV'))
+    LambdaTGV = params.Regul_LambdaTGV;
+else
+    LambdaTGV = 0;
+end
+if (isfield(params,'Ring_LambdaR_L1'))
+    lambdaR_L1 = params.Ring_LambdaR_L1;
+else
+    lambdaR_L1 = 0;
+end
+if (isfield(params,'Ring_Alpha'))
+    alpha_ring = params.Ring_Alpha; % higher values can accelerate ring removal procedure
+else
+    alpha_ring = 1;
+end
+if (isfield(params,'Regul_Dimension'))
+    Dimension = params.Regul_Dimension;
+    if ((strcmp('2D', Dimension) ~= 1) && (strcmp('3D', Dimension) ~= 1))
+        Dimension = '3D';
+    end
+else
+    Dimension = '3D';
+end
+if (isfield(params,'show'))
+    show = params.show;
+else
+    show = 0;
+end
+if (isfield(params,'maxvalplot'))
+    maxvalplot = params.maxvalplot;
+else
+    maxvalplot = 1;
+end
+if (isfield(params,'slice'))
+    slice = params.slice;
+else
+    slice = 1;
+end
+if (isfield(params,'initialize'))
+    X  = params.initialize;
+    if ((size(X,1) ~= N) || (size(X,2) ~= N) || (size(X,3) ~= SlicesZ))
+        error('%s \n', 'The initialized volume has different dimensions!');
+    end
+else
+    X = zeros(N,N,SlicesZ, 'single'); % storage for the solution
+end
+if (isfield(params,'subsets'))
+    % Ordered Subsets reorganisation of data and angles
+    subsets = params.subsets; % subsets number
+    angles = proj_geom.ProjectionAngles;
+    binEdges = linspace(min(angles),max(angles),subsets+1);
+    
+    % assign values to bins
+    [binsDiscr,~] = histc(angles, [binEdges(1:end-1) Inf]);
+    
+    % get rearranged subset indices
+    IndicesReorg = zeros(length(angles),1);
+    counterM = 0;
+    for ii = 1:max(binsDiscr(:))
+        counter = 0;
+        for jj = 1:subsets
+            curr_index = ii+jj-1 + counter;
+            if (binsDiscr(jj) >= ii)
+                counterM = counterM + 1;
+                IndicesReorg(counterM) = curr_index;
+            end
+            counter = (counter + binsDiscr(jj)) - 1;
+        end
+    end
+else
+    subsets = 0; % Classical FISTA
+end
+
+%----------------Reconstruction part------------------------
+Resid_error = zeros(iterFISTA,1); % errors vector (if the ground truth is given)
+objective = zeros(iterFISTA,1); % objective function values vector
+
+
+if (subsets == 0)
+    % Classical FISTA
+    t = 1;
+    X_t = X;
+    
+    r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
+    r_x = r; % another ring variable
+    residual = zeros(size(sino),'single');
+    
+    % Outer FISTA iterations loop
+    for i = 1:iterFISTA
+        
+        X_old = X;
+        t_old = t;
+        r_old = r;
+        
+        
+        if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
+            % if geometry is 2D use slice-by-slice projection-backprojection routine
+            sino_updt = zeros(size(sino),'single');
+            for kkk = 1:SlicesZ
+                [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geom, vol_geom);
+                sino_updt(:,:,kkk) = sinoT';
+                astra_mex_data2d('delete', sino_id);
+            end
+        else
+            % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8)
+            [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+            astra_mex_data3d('delete', sino_id);
+        end
+        
+        if (lambdaR_L1 > 0)
+            % the ring removal part (Group-Huber fidelity)
+            for kkk = 1:anglesNumb
+                residual(:,kkk,:) =  squeeze(weights(:,kkk,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
+            end
+            vec = sum(residual,2);
+            if (SlicesZ > 1)
+                vec = squeeze(vec(:,1,:));
+            end
+            r = r_x - (1./L_const).*vec;
+            objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
+        elseif (studentt > 0)
+            % artifacts removal with Students t penalty
+            residual = weights.*(sino_updt - sino);
+            for kkk = 1:SlicesZ
+                res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram
+                %s = 100;
+                %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
+                [ff, gr] = studentst(res_vec, 1);
+                residual(:,:,kkk) = reshape(gr, Detectors, anglesNumb);
+            end
+            objective(i) = ff; % for the objective function output
+        else
+            % no ring removal (LS model)
+            residual = weights.*(sino_updt - sino);
+            objective(i) = 0.5*norm(residual(:)); % for the objective function output
+        end
+        
+        % if the geometry is 2D use slice-by-slice projection-backprojection routine
+        if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
+            x_temp = zeros(size(X),'single');
+            for kkk = 1:SlicesZ
+                [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residual(:,:,kkk))', proj_geom, vol_geom);
+            end
+        else
+            [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom);
+            astra_mex_data3d('delete', id);
+        end
+        X = X_t - (1/L_const).*x_temp;
+        
+        % ----------------Regularization part------------------------%
+        if (lambdaFGP_TV > 0)
+            % FGP-TV regularization
+            if ((strcmp('2D', Dimension) == 1))
+                % 2D regularization
+                for kkk = 1:SlicesZ
+                    [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso');
+                end
+            else
+                % 3D regularization
+                [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso');
+            end
+            objective(i) = (objective(i) + f_val)./(Detectors*anglesNumb*SlicesZ);
+        end
+        if (lambdaSB_TV > 0)
+            % Split Bregman regularization
+            if ((strcmp('2D', Dimension) == 1))
+                % 2D regularization
+                for kkk = 1:SlicesZ
+                    X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/L_const, IterationsRegul, tol);  % (more memory efficent)
+                end
+            else
+                % 3D regularization
+                X = SplitBregman_TV(single(X), lambdaSB_TV/L_const, IterationsRegul, tol);  % (more memory efficent)
+            end
+        end
+        if (lambdaHO > 0)
+            % Higher Order (LLT) regularization
+            X2 = zeros(N,N,SlicesZ,'single');
+            if ((strcmp('2D', Dimension) == 1))
+                % 2D regularization
+                for kkk = 1:SlicesZ
+                    X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0);
+                end
+            else
+                % 3D regularization
+                X2 = LLT_model(single(X), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0);
+            end
+            X = 0.5.*(X + X2); % averaged combination of two solutions
+            
+        end
+        if (lambdaPB > 0)
+            % Patch-Based regularization (can be very slow on CPU)
+            if ((strcmp('2D', Dimension) == 1))
+                % 2D regularization
+                for kkk = 1:SlicesZ
+                    X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/L_const);
+                end
+            else
+                X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/L_const);
+            end
+        end
+        if (lambdaPB_GPU > 0)
+            % Patch-Based regularization (GPU CUDA implementation)
+            if ((strcmp('2D', Dimension) == 1))
+                % 2D regularization
+                for kkk = 1:SlicesZ
+                    X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const);
+                end
+            else
+                X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const);
+            end
+        end
+        if (LambdaDiff_HO > 0)
+            % Higher-order diffusion penalty (GPU CUDA implementation)
+            if ((strcmp('2D', Dimension) == 1))
+                % 2D regularization
+                for kkk = 1:SlicesZ
+                    X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul);
+                end
+            else
+                X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul);
+            end
+        end
+        if (LambdaTGV > 0)
+            % Total Generalized variation (currently only 2D)
+            lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper
+            lamTGV2 = 0.8; % second-order term
+            for kkk = 1:SlicesZ
+                X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/L_const, lamTGV1, lamTGV2, IterationsRegul);
+            end
+        end
+        
+        if (lambdaR_L1 > 0)
+            r =  max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
+        end
+        
+        t = (1 + sqrt(1 + 4*t^2))/2; % updating t
+        X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
+        
+        if (lambdaR_L1 > 0)
+            r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
+        end
+        
+        if (show == 1)
+            figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
+            if (lambdaR_L1 > 0)
+                figure(11); plot(r); title('Rings offset vector')
+            end
+            pause(0.01);
+        end
+        if (strcmp(X_ideal, 'none' ) == 0)
+            Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
+            fprintf('%s %i %s %s %.4f  %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
+        else
+            fprintf('%s %i  %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
+        end
+    end
+else
+    % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than the classical version)
+    t = 1;
+    X_t = X;
+    proj_geomSUB = proj_geom;
+    
+    r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
+    r_x = r; % another ring variable
+    residual2 = zeros(size(sino),'single');
+    sino_updt_FULL = zeros(size(sino),'single');
+    
+    
+    % Outer FISTA iterations loop
+    for i = 1:iterFISTA
+        
+        if ((i > 1) && (lambdaR_L1 > 0))
+            % in order to make Group-Huber fidelity work with ordered subsets
+            % we still need to work with full sinogram
+            
+            % the offset variable must be calculated for the whole
+            % updated sinogram - sino_updt_FULL
+            for kkk = 1:anglesNumb
+                residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt_FULL(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
+            end
+            
+            r_old = r;
+            vec = sum(residual2,2);
+            if (SlicesZ > 1)
+                vec = squeeze(vec(:,1,:));
+            end
+            r = r_x - (1./L_const).*vec; % update ring variable
+        end
+                
+       % subsets loop
+        counterInd = 1;        
+        for ss = 1:subsets
+            X_old = X;
+            t_old = t;
+            
+            numProjSub = binsDiscr(ss); % the number of projections per subset
+            sino_updt_Sub = zeros(Detectors, numProjSub, SlicesZ,'single');
+            CurrSubIndeces = IndicesReorg(counterInd:(counterInd + numProjSub - 1)); % extract indeces attached to the subset
+            proj_geomSUB.ProjectionAngles = angles(CurrSubIndeces);
+            
+            if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
+                % if geometry is 2D use slice-by-slice projection-backprojection routine
+                for kkk = 1:SlicesZ
+                    [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geomSUB, vol_geom);
+                    sino_updt_Sub(:,:,kkk) = sinoT';
+                    astra_mex_data2d('delete', sino_id);
+                end
+            else
+                % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8)
+                [sino_id, sino_updt_Sub] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom);
+                astra_mex_data3d('delete', sino_id);
+            end
+            
+            if (lambdaR_L1 > 0)
+                % Group-Huber fidelity (ring removal)
+                residualSub = zeros(Detectors, numProjSub, SlicesZ,'single'); % residual for a chosen subset
+                for kkk = 1:numProjSub
+                    indC = CurrSubIndeces(kkk);
+                    residualSub(:,kkk,:) =  squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
+                    sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram
+                end
+                
+            elseif (studentt > 0)
+                % student t data fidelity
+                
+                % artifacts removal with Students t penalty
+                residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:)));
+                
+                for kkk = 1:SlicesZ
+                    res_vec = reshape(residualSub(:,:,kkk), Detectors*numProjSub, 1); % 1D vectorized sinogram
+                    %s = 100;
+                    %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
+                    [ff, gr] = studentst(res_vec, 1);
+                    residualSub(:,:,kkk) = reshape(gr, Detectors, numProjSub);
+                end
+                objective(i) = ff; % for the objective function output
+            else
+                % PWLS model                
+                residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:)));
+                objective(i) = 0.5*norm(residualSub(:)); % for the objective function output
+            end
+            
+            % perform backprojection of a subset
+            if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
+                % if geometry is 2D use slice-by-slice projection-backprojection routine
+                x_temp = zeros(size(X),'single');
+                for kkk = 1:SlicesZ
+                    [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residualSub(:,:,kkk))', proj_geomSUB, vol_geom);
+                end
+            else
+                [id, x_temp] = astra_create_backprojection3d_cuda(residualSub, proj_geomSUB, vol_geom);
+                astra_mex_data3d('delete', id);
+            end
+            
+            X = X_t - (1/L_const).*x_temp;
+            
+            % ----------------Regularization part------------------------%
+            if (lambdaFGP_TV > 0)
+                % FGP-TV regularization
+                if ((strcmp('2D', Dimension) == 1))
+                    % 2D regularization
+                    for kkk = 1:SlicesZ
+                        [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso');
+                    end
+                else
+                    % 3D regularization
+                    [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso');
+                end
+                objective(i) = objective(i) + f_val;
+            end
+            if (lambdaSB_TV > 0)
+                % Split Bregman regularization
+                if ((strcmp('2D', Dimension) == 1))
+                    % 2D regularization
+                    for kkk = 1:SlicesZ
+                        X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol);  % (more memory efficent)
+                    end
+                else
+                    % 3D regularization
+                    X = SplitBregman_TV(single(X), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol);  % (more memory efficent)
+                end
+            end
+            if (lambdaHO > 0)
+                % Higher Order (LLT) regularization
+                X2 = zeros(N,N,SlicesZ,'single');
+                if ((strcmp('2D', Dimension) == 1))
+                    % 2D regularization
+                    for kkk = 1:SlicesZ
+                        X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0);
+                    end
+                else
+                    % 3D regularization
+                    X2 = LLT_model(single(X), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0);
+                end
+                X = 0.5.*(X + X2); % the averaged combination of two solutions
+            end
+            if (lambdaPB > 0)
+                % Patch-Based regularization (can be slow on CPU)
+                if ((strcmp('2D', Dimension) == 1))
+                    % 2D regularization
+                    for kkk = 1:SlicesZ
+                        X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const));
+                    end
+                else
+                    X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const));
+                end
+            end
+            if (lambdaPB_GPU > 0)
+                % Patch-Based regularization (GPU CUDA implementation)
+                if ((strcmp('2D', Dimension) == 1))
+                    % 2D regularization
+                    for kkk = 1:SlicesZ
+                        X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const));
+                    end
+                else
+                    X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const));
+                end
+            end
+            if (LambdaDiff_HO > 0)
+                % Higher-order diffusion penalty (GPU CUDA implementation)
+                if ((strcmp('2D', Dimension) == 1))
+                    % 2D regularization
+                    for kkk = 1:SlicesZ
+                        X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets));
+                    end
+                else
+                    X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets));
+                end
+            end
+            if (LambdaTGV > 0)
+                % Total Generalized variation (currently only 2D)
+                lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper
+                lamTGV2 = 0.5; % second-order term
+                for kkk = 1:SlicesZ
+                    X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/(subsets*L_const), lamTGV1, lamTGV2, IterationsRegul);
+                end
+            end
+            
+            t = (1 + sqrt(1 + 4*t^2))/2; % updating t
+            X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
+            counterInd = counterInd + numProjSub;
+        end
+        
+        if (i == 1)
+            r_old = r;
+        end
+        
+        % working with a 'ring vector'
+        if (lambdaR_L1 > 0)
+            r =  max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
+            r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
+        end
+        
+        if (show == 1)
+            figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
+            if (lambdaR_L1 > 0)
+                figure(11); plot(r); title('Rings offset vector')
+            end
+            pause(0.01);
+        end
+        
+        if (strcmp(X_ideal, 'none' ) == 0)
+            Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
+            fprintf('%s %i %s %s %.4f  %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
+        else
+            fprintf('%s %i  %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
+        end
+    end
+end
+
+output.Resid_error = Resid_error;
+output.objective = objective;
+output.L_const = L_const;
+
+end
diff --git a/Wrappers/Matlab/compile_mex.m b/Wrappers/Matlab/compile_mex.m
new file mode 100644
index 0000000..66c05da
--- /dev/null
+++ b/Wrappers/Matlab/compile_mex.m
@@ -0,0 +1,11 @@
+% compile mex's in Matlab once
+cd regularizers_CPU/
+
+mex LLT_model.c LLT_model_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+mex FGP_TV.c FGP_TV_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+mex SplitBregman_TV.c SplitBregman_TV_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+mex PatchBased_Regul.c PatchBased_Regul_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+
+cd ../../
+cd demos
diff --git a/Wrappers/Matlab/studentst.m b/Wrappers/Matlab/studentst.m
new file mode 100644
index 0000000..99fed1e
--- /dev/null
+++ b/Wrappers/Matlab/studentst.m
@@ -0,0 +1,47 @@
+function [f,g,h,s,k] = studentst(r,k,s)
+% Students T penalty with 'auto-tuning'
+%
+% use:
+%   [f,g,h,{k,{s}}] = studentst(r)     - automatically fits s and k
+%   [f,g,h,{k,{s}}] = studentst(r,k)   - automatically fits s
+%   [f,g,h,{k,{s}}] = studentst(r,k,s) - use given s and k
+%
+% input:
+%   r - residual as column vector
+%   s - scale (optional)
+%   k - degrees of freedom (optional)
+% 
+% output:
+%   f - misfit (scalar)
+%   g - gradient (column vector)
+%   h - positive approximation of the Hessian (column vector, Hessian is a diagonal matrix)
+%   s,k - scale and degrees of freedom
+%
+% Tristan van Leeuwen, 2012.
+% tleeuwen@eos.ubc.ca
+
+% fit both s and k
+if nargin == 1
+    opts = optimset('maxFunEvals',1e2);
+    tmp = fminsearch(@(x)st(r,x(1),x(2)),[1;2],opts);
+    s   = tmp(1);
+    k   = tmp(2);
+end
+
+
+if nargin == 2
+    opts = optimset('maxFunEvals',1e2);
+    tmp = fminsearch(@(x)st(r,x,k),[1],opts);
+    s   = tmp(1);
+end
+
+% evaulate penalty
+[f,g,h] = st(r,s,k);
+
+
+function [f,g,h] = st(r,s,k)
+n = length(r);
+c = -n*(gammaln((k+1)/2) - gammaln(k/2) - .5*log(pi*s*k));
+f = c + .5*(k+1)*sum(log(1 + conj(r).*r/(s*k)));
+g = (k+1)*r./(s*k + conj(r).*r);
+h = (k+1)./(s*k + conj(r).*r);
diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt
new file mode 100644
index 0000000..506159a
--- /dev/null
+++ b/Wrappers/Python/CMakeLists.txt
@@ -0,0 +1,183 @@
+#   Copyright 2017 Edoardo Pasca
+#
+#   Licensed under the Apache License, Version 2.0 (the "License");
+#   you may not use this file except in compliance with the License.
+#   You may obtain a copy of the License at
+#
+#       http://www.apache.org/licenses/LICENSE-2.0
+#
+#   Unless required by applicable law or agreed to in writing, software
+#   distributed under the License is distributed on an "AS IS" BASIS,
+#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#   See the License for the specific language governing permissions and
+#   limitations under the License.
+
+# variables that must be set for conda compilation
+
+#PREFIX=C:\Apps\Miniconda2\envs\cil\Library
+#LIBRARY_INC=C:\\Apps\\Miniconda2\\envs\\cil\\Library\\include
+set (NUMPY_VERSION 1.12)
+
+## Tries to parse the output of conda env list to determine the current
+## active conda environment
+message ("Trying to determine your active conda environment...")
+execute_process(COMMAND "conda" "env" "list"
+					OUTPUT_VARIABLE _CONDA_ENVS
+					RESULT_VARIABLE _CONDA_RESULT
+					ERROR_VARIABLE _CONDA_ERR)
+			if(NOT _CONDA_RESULT)
+				string(REPLACE "\n" ";" ENV_LIST ${_CONDA_ENVS})
+				foreach(line ${ENV_LIST})
+				  string(REGEX MATCHALL "(.+)[*](.+)" match ${line})
+				  if (NOT ${match} EQUAL "")
+				    #message("MATCHED " ${CMAKE_MATCH_0})
+					#message("MATCHED " ${CMAKE_MATCH_1})
+					#message("MATCHED " ${CMAKE_MATCH_2})
+					string(STRIP ${CMAKE_MATCH_1} CONDA_ENVIRONMENT)
+					string(STRIP ${CMAKE_MATCH_2} CONDA_ENVIRONMENT_PATH)   
+				  endif()
+				endforeach()
+			else()
+				message(FATAL_ERROR "ERROR with conda command " ${_CONDA_ERR})
+			endif()
+
+if (${CONDA_ENVIRONMENT} AND ${CONDA_ENVIRONMENT_PATH})
+  message (FATAL_ERROR "CONDA NOT FOUND")
+else()
+  message("**********************************************************")
+  message("Using current conda environmnet " ${CONDA_ENVIRONMENT})
+  message("Using current conda environmnet path " ${CONDA_ENVIRONMENT_PATH})
+endif()
+
+message("CIL VERSION " ${CIL_VERSION})
+
+# set the Python variables for the Conda environment
+include(FindAnacondaEnvironment.cmake)
+findPythonForAnacondaEnvironment(${CONDA_ENVIRONMENT_PATH})
+
+message("Python found " ${PYTHON_VERSION_STRING})
+message("Python found Major " ${PYTHON_VERSION_MAJOR})
+message("Python found Minor " ${PYTHON_VERSION_MINOR})
+
+findPythonPackagesPath()
+message("PYTHON_PACKAGES_FOUND " ${PYTHON_PACKAGES_PATH})
+
+## CACHE SOME VARIABLES ##
+set (CONDA_ENVIRONMENT ${CONDA_ENVIRONMENT} CACHE INTERNAL "active conda environment" FORCE)
+set (CONDA_ENVIRONMENT_PATH ${CONDA_ENVIRONMENT_PATH} CACHE INTERNAL "active conda environment" FORCE)
+
+set (PYTHON_VERSION_STRING ${PYTHON_VERSION_STRING} CACHE INTERNAL "conda environment Python version string" FORCE)
+set (PYTHON_VERSION_MAJOR ${PYTHON_VERSION_MAJOR} CACHE INTERNAL "conda environment Python version major" FORCE)
+set (PYTHON_VERSION_MINOR ${PYTHON_VERSION_MINOR} CACHE INTERNAL "conda environment Python version minor" FORCE)
+set (PYTHON_VERSION_PATCH ${PYTHON_VERSION_PATCH} CACHE INTERNAL "conda environment Python version patch" FORCE)
+set (PYTHON_PACKAGES_PATH ${PYTHON_PACKAGES_PATH} CACHE INTERNAL "conda environment Python packages path" FORCE)
+
+if (WIN32)
+  #set (CONDA_ENVIRONMENT_PATH "C:\\Apps\\Miniconda2\\envs\\${CONDA_ENVIRONMENT}" CACHE PATH "Main environment directory")
+  set (CONDA_ENVIRONMENT_PREFIX "${CONDA_ENVIRONMENT_PATH}\\Library" CACHE PATH "env dir")
+  set (CONDA_ENVIRONMENT_LIBRARY_INC "${CONDA_ENVIRONMENT_PREFIX}\\include" CACHE PATH "env dir")
+elseif (UNIX)
+  #set (CONDA_ENVIRONMENT_PATH "/apps/anaconda/2.4/envs/${CONDA_ENVIRONMENT}" CACHE PATH "Main environment directory")
+  set (CONDA_ENVIRONMENT_PREFIX "${CONDA_ENVIRONMENT_PATH}/lib/python${PYTHON_VERSION_MAJOR}.${PYTHON_VERSION_MINOR}" CACHE PATH "env dir")
+  set (CONDA_ENVIRONMENT_LIBRARY_INC "${CONDA_ENVIRONMENT_PREFIX}/include" CACHE PATH "env dir")
+endif()
+
+######### CONFIGURE REGULARIZER PACKAGE #############
+
+# copy the Pyhon files of the package regularizer
+file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging/)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi)
+# regularizers
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/imaging/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/imaging/Regularizer.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging)
+
+# Copy and configure the relative conda build and recipes
+configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup.py)
+file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/meta.yaml DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe)
+
+if (WIN32)
+	
+  file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/bld.bat DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe/) 
+  configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile.bat.in ${CMAKE_CURRENT_BINARY_DIR}/compile.bat)
+
+elseif(UNIX)
+  
+  message ("We are on UNIX")
+  file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/build.sh DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe/)
+  # assumes we will use bash
+  configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile.sh.in ${CMAKE_CURRENT_BINARY_DIR}/compile.sh)
+
+endif()
+
+########## CONFIGURE FISTA RECONSTRUCTOR PACKAGE
+# fista reconstructor
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/FISTAReconstructor.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/DeviceModel.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/AstraDevice.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
+
+configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup-fista.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup-fista.py)
+file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/meta.yaml DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe)
+
+if (WIN32)
+
+  file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/bld.bat DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe/)
+  configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile-fista.bat.in ${CMAKE_CURRENT_BINARY_DIR}/compile-fista.bat)
+
+elseif(UNIX)
+  message ("We are on UNIX")
+  file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/build.sh DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe/)
+  # assumes we will use bash
+  configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile-fista.sh.in ${CMAKE_CURRENT_BINARY_DIR}/compile-fista.sh)
+endif()
+
+#############################  TARGETS
+
+##########################  REGULARIZER PACKAGE ###############################
+
+# runs cmake on the build tree to update the code from source
+add_custom_target(update_code 
+		COMMAND ${CMAKE_COMMAND} 
+		ARGS ${CMAKE_SOURCE_DIR}
+		WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
+		) 
+
+
+add_custom_target(fista
+		COMMAND bash
+		compile-fista.sh
+		WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
+		DEPENDS ${update_code}
+		)
+
+add_custom_target(regularizers
+		COMMAND bash
+		compile.sh
+		WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
+		DEPENDS update_code
+		)
+
+add_custom_target(install-fista
+		COMMAND ${CONDA_EXECUTABLE}
+		install --force --use-local ccpi-fista=${CIL_VERSION} -c ccpi -c conda-forge
+		WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
+		)
+
+add_custom_target(install-regularizers
+		COMMAND ${CONDA_EXECUTABLE}
+		install --force --use-local ccpi-regularizers=${CIL_VERSION} -c ccpi -c conda-forge
+		WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
+		)
+### add tests
+
+#add_executable(RegularizersTest )
+#find_package(tiff)
+#if (TIFF_FOUND)
+#  message("LibTIFF Found")
+#  message("TIFF_INCLUDE_DIR " ${TIFF_INCLUDE_DIR})
+#  message("TIFF_LIBRARIES" ${TIFF_LIBRARIES})
+#else()
+#  message("LibTIFF not found")
+#endif()
diff --git a/Wrappers/Python/FindAnacondaEnvironment.cmake b/Wrappers/Python/FindAnacondaEnvironment.cmake
new file mode 100644
index 0000000..6475128
--- /dev/null
+++ b/Wrappers/Python/FindAnacondaEnvironment.cmake
@@ -0,0 +1,154 @@
+#   Copyright 2017 Edoardo Pasca
+#
+#   Licensed under the Apache License, Version 2.0 (the "License");
+#   you may not use this file except in compliance with the License.
+#   You may obtain a copy of the License at
+#
+#       http://www.apache.org/licenses/LICENSE-2.0
+#
+#   Unless required by applicable law or agreed to in writing, software
+#   distributed under the License is distributed on an "AS IS" BASIS,
+#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#   See the License for the specific language governing permissions and
+#   limitations under the License.
+
+# #.rst:
+# FindAnacondaEnvironment
+# --------------
+#
+# Find Python executable and library for a specific Anaconda environment
+#
+# This module finds the Python interpreter for a specific Anaconda enviroment, 
+# if installed and determines where the include files and libraries are.  
+# This code sets the following variables:
+#
+# ::
+#   PYTHONINTERP_FOUND         - if the Python interpret has been found
+#   PYTHON_EXECUTABLE          - the Python interpret found
+#   PYTHON_LIBRARY             - path to the python library
+#   PYTHON_INCLUDE_PATH        - path to where Python.h is found (deprecated)
+#   PYTHON_INCLUDE_DIRS        - path to where Python.h is found
+#   PYTHONLIBS_VERSION_STRING  - version of the Python libs found (since CMake 2.8.8)
+#   PYTHON_VERSION_MAJOR       - major Python version
+#   PYTHON_VERSION_MINOR       - minor Python version
+#   PYTHON_VERSION_PATCH       - patch Python version
+
+
+
+function (findPythonForAnacondaEnvironment env)
+	if (WIN32)
+	  file(TO_CMAKE_PATH ${env}/python.exe PYTHON_EXECUTABLE)
+        elseif (UNIX)
+  	  file(TO_CMAKE_PATH ${env}/bin/python PYTHON_EXECUTABLE)
+	endif()
+
+	
+	message("findPythonForAnacondaEnvironment Found Python Executable" ${PYTHON_EXECUTABLE})
+	####### FROM FindPythonInterpr ########
+	# determine python version string
+	if(PYTHON_EXECUTABLE)
+		execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c
+								"import sys; sys.stdout.write(';'.join([str(x) for x in sys.version_info[:3]]))"
+						OUTPUT_VARIABLE _VERSION
+						RESULT_VARIABLE _PYTHON_VERSION_RESULT
+						ERROR_QUIET)
+		if(NOT _PYTHON_VERSION_RESULT)
+			string(REPLACE ";" "." _PYTHON_VERSION_STRING "${_VERSION}")
+			list(GET _VERSION 0 _PYTHON_VERSION_MAJOR)
+			list(GET _VERSION 1 _PYTHON_VERSION_MINOR)
+			list(GET _VERSION 2 _PYTHON_VERSION_PATCH)
+			if(PYTHON_VERSION_PATCH EQUAL 0)
+				# it's called "Python 2.7", not "2.7.0"
+				string(REGEX REPLACE "\\.0$" "" _PYTHON_VERSION_STRING "${PYTHON_VERSION_STRING}")
+			endif()
+		else()
+			# sys.version predates sys.version_info, so use that
+			execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c "import sys; sys.stdout.write(sys.version)"
+							OUTPUT_VARIABLE _VERSION
+							RESULT_VARIABLE _PYTHON_VERSION_RESULT
+							ERROR_QUIET)
+			if(NOT _PYTHON_VERSION_RESULT)
+				string(REGEX REPLACE " .*" "" _PYTHON_VERSION_STRING "${_VERSION}")
+				string(REGEX REPLACE "^([0-9]+)\\.[0-9]+.*" "\\1" _PYTHON_VERSION_MAJOR "${PYTHON_VERSION_STRING}")
+				string(REGEX REPLACE "^[0-9]+\\.([0-9])+.*" "\\1" _PYTHON_VERSION_MINOR "${PYTHON_VERSION_STRING}")
+				if(PYTHON_VERSION_STRING MATCHES "^[0-9]+\\.[0-9]+\\.([0-9]+)")
+					set(PYTHON_VERSION_PATCH "${CMAKE_MATCH_1}")
+				else()
+					set(PYTHON_VERSION_PATCH "0")
+				endif()
+			else()
+				# sys.version was first documented for Python 1.5, so assume
+				# this is older.
+				set(PYTHON_VERSION_STRING "1.4" PARENT_SCOPE)
+				set(PYTHON_VERSION_MAJOR "1" PARENT_SCOPE)
+				set(PYTHON_VERSION_MINOR "4" PARENT_SCOPE)
+				set(PYTHON_VERSION_PATCH "0" PARENT_SCOPE)
+			endif()
+		endif()
+		unset(_PYTHON_VERSION_RESULT)
+		unset(_VERSION)
+	endif()
+	###############################################
+	
+	set (PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} PARENT_SCOPE)
+	set (PYTHONINTERP_FOUND "ON" PARENT_SCOPE)
+	set (PYTHON_VERSION_STRING ${_PYTHON_VERSION_STRING} PARENT_SCOPE)
+	set (PYTHON_VERSION_MAJOR ${_PYTHON_VERSION_MAJOR} PARENT_SCOPE)
+	set (PYTHON_VERSION_MINOR ${_PYTHON_VERSION_MINOR} PARENT_SCOPE)
+	set (PYTHON_VERSION_PATCH ${_PYTHON_VERSION_PATCH} PARENT_SCOPE)
+	message("My version found " ${PYTHON_VERSION_STRING})
+	## find conda executable
+	if (WIN32)
+	  set (CONDA_EXECUTABLE ${env}/Script/conda PARENT_SCOPE)
+	elseif(UNIX)
+	  set (CONDA_EXECUTABLE ${env}/bin/conda PARENT_SCOPE)
+	endif()
+endfunction()
+
+
+
+set(Python_ADDITIONAL_VERSIONS 3.5)
+
+find_package(PythonInterp)
+if (PYTHONINTERP_FOUND)
+  
+  message("Found interpret " ${PYTHON_EXECUTABLE})
+  message("Python Library " ${PYTHON_LIBRARY})
+  message("Python Include Dir " ${PYTHON_INCLUDE_DIR})
+  message("Python Include Path " ${PYTHON_INCLUDE_PATH})
+  
+  foreach(pv ${PYTHON_VERSION_STRING})
+    message("Found interpret " ${pv})
+  endforeach()
+endif()
+
+
+
+find_package(PythonLibs)
+if (PYTHONLIB_FOUND) 
+  message("Found PythonLibs PYTHON_LIBRARIES " ${PYTHON_LIBRARIES})
+  message("Found PythonLibs PYTHON_INCLUDE_PATH " ${PYTHON_INCLUDE_PATH})
+  message("Found PythonLibs PYTHON_INCLUDE_DIRS " ${PYTHON_INCLUDE_DIRS})
+  message("Found PythonLibs PYTHONLIBS_VERSION_STRING " ${PYTHONLIBS_VERSION_STRING}  )
+else()
+  message("No PythonLibs Found")  
+endif()
+
+
+
+
+function(findPythonPackagesPath)
+   execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import *; print (get_python_lib())"
+                      RESULT_VARIABLE PYTHON_CVPY_PROCESS
+                      OUTPUT_VARIABLE PYTHON_STD_PACKAGES_PATH
+                      OUTPUT_STRIP_TRAILING_WHITESPACE)
+   #message("STD_PACKAGES " ${PYTHON_STD_PACKAGES_PATH})
+   if("${PYTHON_STD_PACKAGES_PATH}" MATCHES "site-packages")
+        set(_PYTHON_PACKAGES_PATH "python${PYTHON_VERSION_MAJOR_MINOR}/site-packages")
+   endif()
+
+    SET(PYTHON_PACKAGES_PATH "${PYTHON_STD_PACKAGES_PATH}" PARENT_SCOPE)
+
+endfunction()
+
+
diff --git a/Wrappers/Python/ccpi/reconstruction/AstraDevice.py b/Wrappers/Python/ccpi/reconstruction/AstraDevice.py
new file mode 100644
index 0000000..57435f8
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/AstraDevice.py
@@ -0,0 +1,95 @@
+import astra
+from ccpi.reconstruction.DeviceModel import DeviceModel
+import numpy
+
+class AstraDevice(DeviceModel):
+    '''Concrete class for Astra Device'''
+
+    def __init__(self,
+                 device_type,
+                 data_aquisition_geometry,
+                 reconstructed_volume_geometry):
+        
+        super(AstraDevice, self).__init__(device_type,
+                                          data_aquisition_geometry,
+                                          reconstructed_volume_geometry)
+
+        self.type = device_type
+        self.proj_geom = astra.creators.create_proj_geom(
+            device_type,
+            self.acquisition_data_geometry['detectorSpacingX'],
+            self.acquisition_data_geometry['detectorSpacingY'],
+            self.acquisition_data_geometry['cameraX'],
+            self.acquisition_data_geometry['cameraY'],
+            self.acquisition_data_geometry['angles'],
+            )
+        
+        self.vol_geom = astra.creators.create_vol_geom(
+            self.reconstructed_volume_geometry['X'],
+            self.reconstructed_volume_geometry['Y'],
+            self.reconstructed_volume_geometry['Z']
+            )
+        
+    def doForwardProject(self, volume):
+        '''Forward projects the volume according to the device geometry
+
+Uses Astra-toolbox
+'''
+              
+        try:
+            sino_id, y = astra.creators.create_sino3d_gpu(
+                volume, self.proj_geom, self.vol_geom)
+            astra.matlab.data3d('delete', sino_id)
+            return y
+        except Exception as e:
+            print(e)
+            print("Value Error: ", self.proj_geom, self.vol_geom)
+
+    def doBackwardProject(self, projections):
+        '''Backward projects the projections according to the device geometry
+
+Uses Astra-toolbox
+'''
+        idx, volume = \
+               astra.creators.create_backprojection3d_gpu(
+                   projections,
+                   self.proj_geom,
+                   self.vol_geom)
+        
+        astra.matlab.data3d('delete', idx)
+        return volume
+    
+    def createReducedDevice(self, proj_par={'cameraY' : 1} , vol_par={'Z':1}):
+        '''Create a new device based on the current device by changing some parameter
+
+VERY RISKY'''
+        acquisition_data_geometry = self.acquisition_data_geometry.copy()
+        for k,v in proj_par.items():
+            if k in acquisition_data_geometry.keys():
+                acquisition_data_geometry[k] = v
+        proj_geom =  [ 
+            acquisition_data_geometry['cameraX'],
+            acquisition_data_geometry['cameraY'],
+            acquisition_data_geometry['detectorSpacingX'],
+            acquisition_data_geometry['detectorSpacingY'],
+            acquisition_data_geometry['angles']
+            ]
+
+        reconstructed_volume_geometry = self.reconstructed_volume_geometry.copy()
+        for k,v in vol_par.items():
+            if k in reconstructed_volume_geometry.keys():
+                reconstructed_volume_geometry[k] = v
+        
+        vol_geom = [
+            reconstructed_volume_geometry['X'],
+            reconstructed_volume_geometry['Y'],
+            reconstructed_volume_geometry['Z']
+            ]
+        return AstraDevice(self.type, proj_geom, vol_geom)
+        
+
+        
+if __name__=="main":
+    a = AstraDevice()
+
+
diff --git a/Wrappers/Python/ccpi/reconstruction/DeviceModel.py b/Wrappers/Python/ccpi/reconstruction/DeviceModel.py
new file mode 100644
index 0000000..eeb9a34
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/DeviceModel.py
@@ -0,0 +1,63 @@
+from abc import ABCMeta, abstractmethod
+from enum import Enum
+
+class DeviceModel(metaclass=ABCMeta):
+    '''Abstract class that defines the device for projection and backprojection
+
+This class defines the methods that must be implemented by concrete classes.
+
+    '''
+    
+    class DeviceType(Enum):
+        '''Type of device
+PARALLEL BEAM
+PARALLEL BEAM 3D
+CONE BEAM
+HELICAL'''
+        
+        PARALLEL = 'parallel'
+        PARALLEL3D = 'parallel3d'
+        CONE_BEAM = 'cone-beam'
+        HELICAL = 'helical'
+        
+    def __init__(self,
+                 device_type,
+                 data_aquisition_geometry,
+                 reconstructed_volume_geometry):
+        '''Initializes the class
+
+Mandatory parameters are:
+device_type from DeviceType Enum
+data_acquisition_geometry: tuple (camera_X, camera_Y, detectorSpacingX,
+                                  detectorSpacingY, angles)
+reconstructed_volume_geometry: tuple (dimX,dimY,dimZ)
+'''
+        self.device_geometry = device_type
+        self.acquisition_data_geometry = {
+            'cameraX':           data_aquisition_geometry[0],
+            'cameraY':           data_aquisition_geometry[1],
+            'detectorSpacingX' : data_aquisition_geometry[2],
+            'detectorSpacingY' : data_aquisition_geometry[3],
+            'angles' :           data_aquisition_geometry[4],}
+        self.reconstructed_volume_geometry = {
+            'X': reconstructed_volume_geometry[0] ,
+            'Y': reconstructed_volume_geometry[1] ,
+            'Z': reconstructed_volume_geometry[2] }
+
+    @abstractmethod
+    def doForwardProject(self, volume):
+        '''Forward projects the volume according to the device geometry'''
+        return NotImplemented
+
+    
+    @abstractmethod
+    def doBackwardProject(self, projections):
+        '''Backward projects the projections according to the device geometry'''
+        return NotImplemented
+
+    @abstractmethod
+    def createReducedDevice(self):
+        '''Create a Device to do forward/backward projections on 2D slices'''
+        return NotImplemented
+    
+
diff --git a/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py b/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py
new file mode 100644
index 0000000..e40ad24
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -0,0 +1,882 @@
+# -*- coding: utf-8 -*-
+###############################################################################
+#This work is part of the Core Imaging Library developed by
+#Visual Analytics and Imaging System Group of the Science Technology
+#Facilities Council, STFC
+#
+#Copyright 2017 Edoardo Pasca, Srikanth Nagella
+#Copyright 2017 Daniil Kazantsev
+#
+#Licensed under the Apache License, Version 2.0 (the "License");
+#you may not use this file except in compliance with the License.
+#You may obtain a copy of the License at
+#http://www.apache.org/licenses/LICENSE-2.0
+#Unless required by applicable law or agreed to in writing, software
+#distributed under the License is distributed on an "AS IS" BASIS,
+#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#See the License for the specific language governing permissions and
+#limitations under the License.
+###############################################################################
+
+
+
+import numpy
+#from ccpi.reconstruction.parallelbeam import alg
+
+#from ccpi.imaging.Regularizer import Regularizer
+from enum import Enum
+
+import astra
+from ccpi.reconstruction.AstraDevice import AstraDevice
+
+   
+    
+class FISTAReconstructor():
+    '''FISTA-based reconstruction algorithm using ASTRA-toolbox
+    
+    '''
+    # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>>
+    # ___Input___:
+    # params.[] file:
+    #       - .proj_geom (geometry of the projector) [required]
+    #       - .vol_geom (geometry of the reconstructed object) [required]
+    #       - .sino (vectorized in 2D or 3D sinogram) [required]
+    #       - .iterFISTA (iterations for the main loop, default 40)
+    #       - .L_const (Lipschitz constant, default Power method)                                                                                                    )
+    #       - .X_ideal (ideal image, if given)
+    #       - .weights (statisitcal weights, size of the sinogram)
+    #       - .ROI (Region-of-interest, only if X_ideal is given)
+    #       - .initialize (a 'warm start' using SIRT method from ASTRA)
+    #----------------Regularization choices------------------------
+    #       - .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
+    #       - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
+    #       - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter)
+    #       - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
+    #       - .Regul_Iterations (iterations for the selected penalty, default 25)
+    #       - .Regul_tauLLT (time step parameter for LLT term)
+    #       - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
+    #       - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
+    #----------------Visualization parameters------------------------
+    #       - .show (visualize reconstruction 1/0, (0 default))
+    #       - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
+    #       - .slice (for 3D volumes - slice number to imshow)
+    # ___Output___:
+    # 1. X - reconstructed image/volume
+    # 2. output - a structure with
+    #    - .Resid_error - residual error (if X_ideal is given)
+    #    - .objective: value of the objective function
+    #    - .L_const: Lipshitz constant to avoid recalculations
+    
+    # References:
+    # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
+    # Problems" by A. Beck and M Teboulle
+    # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo
+    # 3. "A novel tomographic reconstruction method based on the robust
+    # Student's t function for suppressing data outliers" D. Kazantsev et.al.
+    # D. Kazantsev, 2016-17
+    def __init__(self, projector_geometry,
+                 output_geometry,
+                 input_sinogram,
+                 device, 
+                 **kwargs):
+        # handle parmeters:
+        # obligatory parameters
+        self.pars = dict()
+        self.pars['projector_geometry'] = projector_geometry # proj_geom
+        self.pars['output_geometry'] = output_geometry       # vol_geom
+        self.pars['input_sinogram'] = input_sinogram         # sino
+        sliceZ, nangles, detectors = numpy.shape(input_sinogram)
+        self.pars['detectors'] = detectors
+        self.pars['number_of_angles'] = nangles
+        self.pars['SlicesZ'] = sliceZ
+        self.pars['output_volume'] = None
+        self.pars['device_model'] = device
+
+        self.use_device = True
+        
+        print (self.pars)
+        # handle optional input parameters (at instantiation)
+        
+        # Accepted input keywords
+        kw = (
+              # mandatory fields
+              'projector_geometry',
+              'output_geometry',
+              'input_sinogram',
+              'detectors',
+              'number_of_angles',
+              'SlicesZ',
+              # optional fields
+              'number_of_iterations', 
+              'Lipschitz_constant' , 
+              'ideal_image' ,
+              'weights' , 
+              'region_of_interest' , 
+              'initialize' , 
+              'regularizer' , 
+              'ring_lambda_R_L1',
+              'ring_alpha',
+              'subsets',
+              'output_volume',
+              'os_subsets',
+              'os_indices',
+              'os_bins',
+              'device_model',
+              'reduced_device_model')
+        self.acceptedInputKeywords = list(kw)
+        
+        # handle keyworded parameters
+        if kwargs is not None:
+            for key, value in kwargs.items():
+                if key in kw:
+                    #print("{0} = {1}".format(key, value))                        
+                    self.pars[key] = value
+                    
+        # set the default values for the parameters if not set
+        if 'number_of_iterations' in kwargs.keys():
+            self.pars['number_of_iterations'] = kwargs['number_of_iterations']
+        else:
+            self.pars['number_of_iterations'] = 40
+        if 'weights' in kwargs.keys():
+            self.pars['weights'] = kwargs['weights']
+        else:
+            self.pars['weights'] = \
+                                 numpy.ones(numpy.shape(
+                                     self.pars['input_sinogram']))
+        if 'Lipschitz_constant' in kwargs.keys():
+            self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant']
+        else:
+            self.pars['Lipschitz_constant'] = None
+        
+        if not 'ideal_image' in kwargs.keys():
+            self.pars['ideal_image'] = None
+        
+        if not 'region_of_interest'in kwargs.keys() :
+            if self.pars['ideal_image'] == None:
+                self.pars['region_of_interest'] = None
+            else:
+                ## nonzero if the image is larger than m
+                fsm = numpy.frompyfunc(lambda x,m: 1 if x>m else 0, 2,1)
+                
+                self.pars['region_of_interest'] = fsm(self.pars['ideal_image'], 0)
+                
+        # the regularizer must be a correctly instantiated object    
+        if not 'regularizer' in kwargs.keys() :
+            self.pars['regularizer'] = None
+
+        #RING REMOVAL
+        if not 'ring_lambda_R_L1' in kwargs.keys():
+            self.pars['ring_lambda_R_L1'] = 0
+        if not 'ring_alpha' in kwargs.keys():
+            self.pars['ring_alpha'] = 1
+
+        # ORDERED SUBSET
+        if not 'subsets' in kwargs.keys():
+            self.pars['subsets'] = 0
+        else:
+            self.createOrderedSubsets()
+
+        if not 'initialize' in kwargs.keys():
+            self.pars['initialize'] = False
+
+        reduced_device = device.createReducedDevice()
+        self.setParameter(reduced_device_model=reduced_device)
+
+        
+                
+    def setParameter(self, **kwargs):
+        '''set named parameter for the reconstructor engine
+        
+        raises Exception if the named parameter is not recognized
+        
+        '''
+        for key , value in kwargs.items():
+            if key in self.acceptedInputKeywords:
+                self.pars[key] = value
+            else:
+                raise Exception('Wrong parameter {0} for '.format(key) +
+                                'reconstructor')
+    # setParameter
+
+    def getParameter(self, key):
+        if type(key) is str:
+            if key in self.acceptedInputKeywords:
+                return self.pars[key]
+            else:
+                raise Exception('Unrecongnised parameter: {0} '.format(key) )
+        elif type(key) is list:
+            outpars = []
+            for k in key:
+                outpars.append(self.getParameter(k))
+            return outpars
+        else:
+            raise Exception('Unhandled input {0}' .format(str(type(key))))
+            
+    
+    def calculateLipschitzConstantWithPowerMethod(self):
+        ''' using Power method (PM) to establish L constant'''
+        
+        N = self.pars['output_geometry']['GridColCount']
+        proj_geom = self.pars['projector_geometry']
+        vol_geom = self.pars['output_geometry']
+        weights = self.pars['weights']
+        SlicesZ = self.pars['SlicesZ']
+        
+            
+                               
+        if (proj_geom['type'] == 'parallel') or \
+           (proj_geom['type'] == 'parallel3d'):
+            #% for parallel geometry we can do just one slice
+            #print('Calculating Lipshitz constant for parallel beam geometry...')
+            niter = 5;# % number of iteration for the PM
+            #N = params.vol_geom.GridColCount;
+            #x1 = rand(N,N,1);
+            x1 = numpy.random.rand(1,N,N)
+            #sqweight = sqrt(weights(:,:,1));
+            sqweight = numpy.sqrt(weights[0:1,:,:])
+            proj_geomT = proj_geom.copy();
+            proj_geomT['DetectorRowCount'] = 1;
+            vol_geomT = vol_geom.copy();
+            vol_geomT['GridSliceCount'] = 1;
+            
+            #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
+            
+            
+            for i in range(niter):
+            #        [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geomT, vol_geomT);
+            #            s = norm(x1(:));
+            #            x1 = x1/s;
+            #            [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
+            #            y = sqweight.*y;
+            #            astra_mex_data3d('delete', sino_id);
+            #            astra_mex_data3d('delete', id);
+                #print ("iteration {0}".format(i))
+                                
+                sino_id, y = astra.creators.create_sino3d_gpu(x1,
+                                                          proj_geomT,
+                                                          vol_geomT)
+                
+                y = (sqweight * y).copy() # element wise multiplication
+                
+                #b=fig.add_subplot(2,1,2)
+                #imgplot = plt.imshow(x1[0])
+                #plt.show()
+                
+                #astra_mex_data3d('delete', sino_id);
+                astra.matlab.data3d('delete', sino_id)
+                del x1
+                    
+                idx,x1 = astra.creators.create_backprojection3d_gpu((sqweight*y).copy(), 
+                                                                    proj_geomT,
+                                                                    vol_geomT)
+                del y
+                
+                                                                    
+                s = numpy.linalg.norm(x1)
+                ### this line?
+                x1 = (x1/s).copy();
+                
+            #        ### this line?
+            #        sino_id, y = astra.creators.create_sino3d_gpu(x1, 
+            #                                                      proj_geomT, 
+            #                                                      vol_geomT);
+            #        y = sqweight * y;
+                astra.matlab.data3d('delete', sino_id);
+                astra.matlab.data3d('delete', idx)
+                print ("iteration {0} s= {1}".format(i,s))
+                
+            #end
+            del proj_geomT
+            del vol_geomT
+            #plt.show()
+        else:
+            #% divergen beam geometry
+            print('Calculating Lipshitz constant for divergen beam geometry...')
+            niter = 8; #% number of iteration for PM
+            x1 = numpy.random.rand(SlicesZ , N , N);
+            #sqweight = sqrt(weights);
+            sqweight = numpy.sqrt(weights[0])
+            
+            sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom);
+            y = sqweight*y;
+            #astra_mex_data3d('delete', sino_id);
+            astra.matlab.data3d('delete', sino_id);
+            
+            for i in range(niter):
+                #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
+                idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, 
+                                                                    proj_geom, 
+                                                                    vol_geom)
+                s = numpy.linalg.norm(x1)
+                ### this line?
+                x1 = x1/s;
+                ### this line?
+                #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom);
+                sino_id, y = astra.creators.create_sino3d_gpu(x1, 
+                                                              proj_geom, 
+                                                              vol_geom);
+                
+                y = sqweight*y;
+                #astra_mex_data3d('delete', sino_id);
+                #astra_mex_data3d('delete', id);
+                astra.matlab.data3d('delete', sino_id);
+                astra.matlab.data3d('delete', idx);
+            #end
+            #clear x1
+            del x1
+
+        
+        return s
+    
+    
+    def setRegularizer(self, regularizer):
+        if regularizer is not None:
+            self.pars['regularizer'] = regularizer
+        
+
+    def initialize(self):
+        # convenience variable storage
+        proj_geom = self.pars['projector_geometry']
+        vol_geom = self.pars['output_geometry']
+        sino = self.pars['input_sinogram']
+        
+        # a 'warm start' with SIRT method
+        # Create a data object for the reconstruction
+        rec_id = astra.matlab.data3d('create', '-vol',
+                                    vol_geom);
+        
+        #sinogram_id = astra_mex_data3d('create', '-proj3d', proj_geom, sino);
+        sinogram_id = astra.matlab.data3d('create', '-proj3d',
+                                          proj_geom,
+                                          sino)
+
+        sirt_config = astra.astra_dict('SIRT3D_CUDA')
+        sirt_config['ReconstructionDataId' ] = rec_id
+        sirt_config['ProjectionDataId'] = sinogram_id
+
+        sirt = astra.algorithm.create(sirt_config)
+        astra.algorithm.run(sirt, iterations=35)
+        X = astra.matlab.data3d('get', rec_id)
+
+        # clean up memory
+        astra.matlab.data3d('delete', rec_id)
+        astra.matlab.data3d('delete', sinogram_id)
+        astra.algorithm.delete(sirt)
+
+        
+
+        return X
+
+    def createOrderedSubsets(self, subsets=None):
+        if subsets is None:
+            try:
+                subsets = self.getParameter('subsets')
+            except Exception():
+                subsets = 0
+            #return subsets
+        else:
+            self.setParameter(subsets=subsets)
+            
+
+        angles = self.getParameter('projector_geometry')['ProjectionAngles'] 
+        
+        #binEdges = numpy.linspace(angles.min(),
+        #                          angles.max(),
+        #                          subsets + 1)
+        binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
+        # get rearranged subset indices
+        IndicesReorg = numpy.zeros((numpy.shape(angles)), dtype=numpy.int32)
+        counterM = 0
+        for ii in range(binsDiscr.max()):
+            counter = 0
+            for jj in range(subsets):
+                curr_index = ii + jj  + counter
+                #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
+                if binsDiscr[jj] > ii:
+                    if (counterM < numpy.size(IndicesReorg)):
+                        IndicesReorg[counterM] = curr_index
+                    counterM = counterM + 1
+                    
+                counter = counter + binsDiscr[jj] - 1    
+                
+        # store the OS in parameters
+        self.setParameter(os_subsets=subsets,
+                          os_bins=binsDiscr,
+                          os_indices=IndicesReorg)
+            
+
+    def prepareForIteration(self):
+        print ("FISTA Reconstructor: prepare for iteration")
+        
+        self.residual_error = numpy.zeros((self.pars['number_of_iterations']))
+        self.objective = numpy.zeros((self.pars['number_of_iterations']))
+
+        #2D array (for 3D data) of sparse "ring" 
+        detectors, nangles, sliceZ  = numpy.shape(self.pars['input_sinogram'])
+        self.r = numpy.zeros((detectors, sliceZ), dtype=numpy.float)
+        # another ring variable
+        self.r_x = self.r.copy()
+
+        self.residual = numpy.zeros(numpy.shape(self.pars['input_sinogram']))
+        
+        if self.getParameter('Lipschitz_constant') is None:
+            self.pars['Lipschitz_constant'] = \
+                            self.calculateLipschitzConstantWithPowerMethod()
+        # errors vector (if the ground truth is given)
+        self.Resid_error = numpy.zeros((self.getParameter('number_of_iterations')));
+        # objective function values vector
+        self.objective = numpy.zeros((self.getParameter('number_of_iterations')));      
+        
+
+    # prepareForIteration
+
+    def iterate (self, Xin=None):
+        if self.getParameter('subsets') == 0:
+            return self.iterateStandard(Xin)
+        else:
+            return self.iterateOrderedSubsets(Xin)
+        
+    def iterateStandard(self, Xin=None):
+        print ("FISTA Reconstructor: iterate")
+        
+        if Xin is None:    
+            if self.getParameter('initialize'):
+                X = self.initialize()
+            else:
+                N = vol_geom['GridColCount']
+                X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
+        else:
+            # copy by reference
+            X = Xin
+        # store the output volume in the parameters
+        self.setParameter(output_volume=X)
+        X_t = X.copy()
+        # convenience variable storage
+        proj_geom , vol_geom, sino , \
+          SlicesZ , ring_lambda_R_L1 , weights = \
+                            self.getParameter([ 'projector_geometry' ,
+                                                'output_geometry',
+                                                'input_sinogram',
+                                                'SlicesZ' ,
+                                                'ring_lambda_R_L1',
+                                                'weights'])
+                   
+        t = 1
+
+        device = self.getParameter('device_model')
+        reduced_device = self.getParameter('reduced_device_model')
+        
+        for i in range(self.getParameter('number_of_iterations')):
+            print("iteration", i)
+            X_old = X.copy()
+            t_old = t
+            r_old = self.r.copy()
+            pg = self.getParameter('projector_geometry')['type']
+            if pg == 'parallel' or \
+               pg == 'fanflat' or \
+               pg == 'fanflat_vec':
+                # if the geometry is parallel use slice-by-slice
+                # projection-backprojection routine
+                #sino_updt = zeros(size(sino),'single');
+                
+                if self.use_device :
+                    self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
+                    
+                    for kkk in range(SlicesZ):
+                        self.sino_updt[kkk] = \
+                            reduced_device.doForwardProject( X_t[kkk:kkk+1] )
+                else:
+                    proj_geomT = proj_geom.copy()
+                    proj_geomT['DetectorRowCount'] = 1
+                    vol_geomT = vol_geom.copy()
+                    vol_geomT['GridSliceCount'] = 1;
+                    self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
+                    for kkk in range(SlicesZ):
+                        sino_id, self.sino_updt[kkk] = \
+                                 astra.creators.create_sino3d_gpu(
+                                     X_t[kkk:kkk+1], proj_geomT, vol_geomT)
+                        astra.matlab.data3d('delete', sino_id)
+            else:
+                # for divergent 3D geometry (watch the GPU memory overflow in
+                # ASTRA versions < 1.8)
+                #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+                
+                if self.use_device:
+                    self.sino_updt = device.doForwardProject(X_t)
+                else:
+                    sino_id, self.sino_updt = astra.creators.create_sino3d_gpu(
+                        X_t, proj_geom, vol_geom)
+                    astra.matlab.data3d('delete', sino_id)
+
+
+            ## RING REMOVAL
+            if ring_lambda_R_L1 != 0:
+                self.ringRemoval(i)
+            else:
+                self.residual = weights * (self.sino_updt - sino)
+                self.objective[i] = 0.5 * numpy.linalg.norm(self.residual)
+                #objective(i) = 0.5*norm(residual(:)); % for the objective function output
+            ## Projection/Backprojection Routine
+            X, X_t = self.projectionBackprojection(X, X_t)
+            
+            ## REGULARIZATION
+            Y = self.regularize(X)
+            X = Y.copy()
+            ## Update Loop
+            X , X_t, t = self.updateLoop(i, X, X_old, r_old, t, t_old)
+
+            print ("t" , t)
+            print ("X min {0} max {1}".format(X_t.min(),X_t.max()))
+            self.setParameter(output_volume=X)
+        return X
+    ## iterate
+    
+    def ringRemoval(self, i):
+        print ("FISTA Reconstructor: ring removal")
+        residual = self.residual
+        lambdaR_L1 , alpha_ring , weights , L_const , sino= \
+                   self.getParameter(['ring_lambda_R_L1',
+                                      'ring_alpha' , 'weights',
+                                      'Lipschitz_constant',
+                                      'input_sinogram'])
+        r_x = self.r_x
+        sino_updt = self.sino_updt
+        
+        SlicesZ, anglesNumb, Detectors = \
+                    numpy.shape(self.getParameter('input_sinogram'))
+        if lambdaR_L1 > 0 :
+             for kkk in range(anglesNumb):
+                 
+                 residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+                                       ((sino_updt[:,kkk,:]).squeeze() - \
+                                        (sino[:,kkk,:]).squeeze() -\
+                                        (alpha_ring * r_x)
+                                        )
+             vec = residual.sum(axis = 1)
+             #if SlicesZ > 1:
+             #    vec = vec[:,1,:].squeeze()
+             self.r = (r_x - (1./L_const) * vec).copy()
+             self.objective[i] = (0.5 * (residual ** 2).sum())
+
+    def projectionBackprojection(self, X, X_t):
+        print ("FISTA Reconstructor: projection-backprojection routine")
+        
+        # a few useful variables
+        SlicesZ, anglesNumb, Detectors = \
+                    numpy.shape(self.getParameter('input_sinogram'))
+        residual = self.residual
+        proj_geom , vol_geom , L_const = \
+                  self.getParameter(['projector_geometry' ,
+                                                  'output_geometry',
+                                                  'Lipschitz_constant'])
+        
+        device, reduced_device = self.getParameter(['device_model',
+                                                    'reduced_device_model'])
+        
+        if self.getParameter('projector_geometry')['type'] == 'parallel' or \
+           self.getParameter('projector_geometry')['type'] == 'fanflat' or \
+           self.getParameter('projector_geometry')['type'] == 'fanflat_vec':
+            # if the geometry is parallel use slice-by-slice
+            # projection-backprojection routine
+            #sino_updt = zeros(size(sino),'single');
+            x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
+                
+            if self.use_device:
+                proj_geomT = proj_geom.copy()
+                proj_geomT['DetectorRowCount'] = 1
+                vol_geomT = vol_geom.copy()
+                vol_geomT['GridSliceCount'] = 1;
+                
+                for kkk in range(SlicesZ):
+                    
+                    x_id, x_temp[kkk] = \
+                             astra.creators.create_backprojection3d_gpu(
+                                 residual[kkk:kkk+1],
+                                 proj_geomT, vol_geomT)
+                    astra.matlab.data3d('delete', x_id)
+            else:
+                for kkk in range(SliceZ):
+                    x_temp[kkk] = \
+                        reduced_device.doBackwardProject(residual[kkk:kkk+1])
+        else:
+            if self.use_device:
+                x_id, x_temp = \
+                  astra.creators.create_backprojection3d_gpu(
+                      residual, proj_geom, vol_geom)
+                astra.matlab.data3d('delete', x_id)
+            else:
+                x_temp = \
+                    device.doBackwardProject(residual)
+                       
+
+        X = X_t - (1/L_const) * x_temp
+        #astra.matlab.data3d('delete', sino_id)
+        return (X , X_t)
+        
+
+    def regularize(self, X , output_all=False):
+        #print ("FISTA Reconstructor: regularize")
+        
+        regularizer = self.getParameter('regularizer')
+        if regularizer is not None:
+            return regularizer(input=X,
+                               output_all=output_all)
+        else:
+            return X
+
+    def updateLoop(self, i, X, X_old, r_old, t, t_old):
+        print ("FISTA Reconstructor: update loop")
+        lambdaR_L1 = self.getParameter('ring_lambda_R_L1')
+            
+        t = (1 + numpy.sqrt(1 + 4 * t**2))/2
+        X_t = X + (((t_old -1)/t) * (X - X_old))
+
+        if lambdaR_L1 > 0:
+            self.r = numpy.max(
+                numpy.abs(self.r) - lambdaR_L1 , 0) * \
+                numpy.sign(self.r)
+            self.r_x = self.r + \
+                             (((t_old-1)/t) * (self.r - r_old))
+
+        if self.getParameter('region_of_interest') is None:
+            string = 'Iteration Number {0} | Objective {1} \n'
+            print (string.format( i, self.objective[i]))
+        else:
+            ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+                                                    'ideal_image')
+            
+            Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+            string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+            print (string.format(i,Resid_error[i], self.objective[i]))
+        return (X , X_t, t)
+
+    def iterateOrderedSubsets(self, Xin=None):
+        print ("FISTA Reconstructor: Ordered Subsets iterate")
+        
+        if Xin is None:    
+            if self.getParameter('initialize'):
+                X = self.initialize()
+            else:
+                N = vol_geom['GridColCount']
+                X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
+        else:
+            # copy by reference
+            X = Xin
+        # store the output volume in the parameters
+        self.setParameter(output_volume=X)
+        X_t = X.copy()
+
+        # some useful constants
+        proj_geom ,    vol_geom, sino , \
+          SlicesZ,     weights , alpha_ring ,\
+          lambdaR_L1 , L_const , iterFISTA         = self.getParameter(
+            ['projector_geometry' , 'output_geometry', 'input_sinogram',
+             'SlicesZ' ,            'weights',         'ring_alpha' ,
+             'ring_lambda_R_L1',    'Lipschitz_constant',
+             'number_of_iterations'])
+
+            
+        # errors vector (if the ground truth is given)
+        Resid_error = numpy.zeros((iterFISTA));
+        # objective function values vector
+        #objective = numpy.zeros((iterFISTA));
+        objective = self.objective
+
+          
+        t = 1
+
+        ## additional for 
+        proj_geomSUB = proj_geom.copy()
+        self.residual2 = numpy.zeros(numpy.shape(sino))
+        residual2 = self.residual2
+        sino_updt_FULL = self.residual.copy()
+        r_x = self.r.copy()
+
+        print ("starting iterations")
+        ##    % Outer FISTA iterations loop
+        for i in range(self.getParameter('number_of_iterations')):
+            # With OS approach it becomes trickier to correlate independent
+            # subsets, hence additional work is required one solution is to
+            # work with a full sinogram at times
+
+            r_old = self.r.copy()
+            t_old = t
+            SlicesZ, anglesNumb, Detectors = \
+                        numpy.shape(self.getParameter('input_sinogram'))        ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
+            if (i > 1 and lambdaR_L1 > 0) :
+                for kkk in range(anglesNumb):
+                     
+                     residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+                                           ((sino_updt_FULL[:,kkk,:]).squeeze() - \
+                                            (sino[:,kkk,:]).squeeze() -\
+                                            (alpha_ring * r_x)
+                                            )
+                
+                vec = self.residual.sum(axis = 1)
+                #if SlicesZ > 1:
+                #    vec = vec[:,1,:] # 1 or 0?
+                r_x = self.r_x
+                # update ring variable
+                self.r = (r_x - (1./L_const) * vec).copy()
+
+            # subset loop
+            counterInd = 1
+            geometry_type = self.getParameter('projector_geometry')['type']
+            angles = self.getParameter('projector_geometry')['ProjectionAngles']
+
+            for ss in range(self.getParameter('subsets')):
+                #print ("Subset {0}".format(ss))
+                X_old = X.copy()
+                t_old = t
+                
+                # the number of projections per subset
+                numProjSub = self.getParameter('os_bins')[ss]
+                CurrSubIndices = self.getParameter('os_indices')\
+                                 [counterInd:counterInd+numProjSub]
+                #print ("Len CurrSubIndices {0}".format(numProjSub))
+                mask = numpy.zeros(numpy.shape(angles), dtype=bool)
+                #cc = 0
+                for j in range(len(CurrSubIndices)):
+                    mask[int(CurrSubIndices[j])] = True
+                proj_geomSUB['ProjectionAngles'] = angles[mask]
+                
+                if self.use_device:
+                    device = self.getParameter('device_model')\
+                             .createReducedDevice(
+                                 proj_par={'angles':angles[mask]},
+                                 vol_par={})
+        
+                shape = list(numpy.shape(self.getParameter('input_sinogram')))
+                shape[1] = numProjSub
+                sino_updt_Sub = numpy.zeros(shape)
+                if geometry_type == 'parallel' or \
+                   geometry_type == 'fanflat' or \
+                   geometry_type == 'fanflat_vec' :
+
+                    for kkk in range(SlicesZ):
+                        if self.use_device:
+                            sinoT = device.doForwardProject(X_t[kkk:kkk+1])
+                        else:
+                            sino_id, sinoT = astra.creators.create_sino3d_gpu (
+                                X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
+                            astra.matlab.data3d('delete', sino_id)
+                        sino_updt_Sub[kkk] = sinoT.T.copy()
+                        
+                else:
+                    # for 3D geometry (watch the GPU memory overflow in
+                    # ASTRA < 1.8)
+                    if self.use_device:
+                        sino_updt_Sub = device.doForwardProject(X_t)
+                        
+                    else:
+                        sino_id, sino_updt_Sub = \
+                             astra.creators.create_sino3d_gpu (X_t, proj_geomSUB, vol_geom)
+                        
+                        astra.matlab.data3d('delete', sino_id)
+        
+                #print ("shape(sino_updt_Sub)",numpy.shape(sino_updt_Sub))
+                if lambdaR_L1 > 0 :
+                    ## RING REMOVAL
+                    #print ("ring removal")
+                    residualSub , sino_updt_Sub, sino_updt_FULL = \
+                        self.ringRemovalOrderedSubsets(ss,
+                                                       counterInd,
+                                                       sino_updt_Sub,
+                                                       sino_updt_FULL)
+                else:
+                    #PWLS model
+                    #print ("PWLS model")
+                    residualSub = weights[:,CurrSubIndices,:] * \
+                                  ( sino_updt_Sub - \
+                                    sino[:,CurrSubIndices,:].squeeze() )
+                    objective[i] = 0.5 * numpy.linalg.norm(residualSub)
+
+                # projection/backprojection routine
+                if geometry_type == 'parallel' or \
+                   geometry_type == 'fanflat' or \
+                   geometry_type == 'fanflat_vec' :
+                    # if geometry is 2D use slice-by-slice projection-backprojection
+                    # routine
+                    x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32)
+                    for kkk in range(SlicesZ):
+                        if self.use_device:
+                            x_temp[kkk] = device.doBackwardProject(
+                                residualSub[kkk:kkk+1])
+                        else:
+                            x_id, x_temp[kkk] = \
+                                     astra.creators.create_backprojection3d_gpu(
+                                         residualSub[kkk:kkk+1],
+                                         proj_geomSUB, vol_geom)
+                            astra.matlab.data3d('delete', x_id)
+                        
+                else:
+                    if self.use_device:
+                        x_temp = device.doBackwardProject(
+                            residualSub)
+                    else:
+                        x_id, x_temp = \
+                          astra.creators.create_backprojection3d_gpu(
+                              residualSub, proj_geomSUB, vol_geom)
+
+                        astra.matlab.data3d('delete', x_id)
+                
+                X = X_t - (1/L_const) * x_temp
+                
+                ## REGULARIZATION
+                X = self.regularize(X)
+                
+                ## Update subset Loop
+                t = (1 + numpy.sqrt(1 + 4 * t**2))/2
+                X_t = X + (((t_old -1)/t) * (X - X_old))
+            # FINAL
+            ## update iteration loop
+            if lambdaR_L1 > 0:
+                self.r = numpy.max(
+                    numpy.abs(self.r) - lambdaR_L1 , 0) * \
+                    numpy.sign(self.r)
+                self.r_x = self.r + \
+                                 (((t_old-1)/t) * (self.r - r_old))
+
+            if self.getParameter('region_of_interest') is None:
+                string = 'Iteration Number {0} | Objective {1} \n'
+                print (string.format( i, self.objective[i]))
+            else:
+                ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+                                                        'ideal_image')
+                
+                Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+                string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+                print (string.format(i,Resid_error[i], self.objective[i]))    
+            print("X min {0} max {1}".format(X.min(),X.max()))
+            self.setParameter(output_volume=X)
+            counterInd = counterInd + numProjSub
+
+        return X
+    
+    def ringRemovalOrderedSubsets(self, ss,counterInd,
+                                  sino_updt_Sub, sino_updt_FULL):
+        residual = self.residual
+        r_x = self.r_x
+        weights , alpha_ring , sino = \
+                self.getParameter( ['weights', 'ring_alpha', 'input_sinogram'])
+        numProjSub = self.getParameter('os_bins')[ss]
+        CurrSubIndices = self.getParameter('os_indices')\
+                         [counterInd:counterInd+numProjSub]
+
+        shape = list(numpy.shape(self.getParameter('input_sinogram')))
+        shape[1] = numProjSub
+            
+        residualSub = numpy.zeros(shape)
+
+        for kkk in range(numProjSub):
+            #print ("ring removal indC ... {0}".format(kkk))
+            indC = int(CurrSubIndices[kkk])
+            residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \
+                (sino_updt_Sub[:,kkk,:].squeeze() - \
+                sino[:,indC,:].squeeze() - alpha_ring * r_x)
+            # filling the full sinogram
+            sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze()
+
+        return (residualSub , sino_updt_Sub, sino_updt_FULL)
+
+
diff --git a/Wrappers/Python/ccpi/reconstruction/Reconstructor.py b/Wrappers/Python/ccpi/reconstruction/Reconstructor.py
new file mode 100644
index 0000000..ba67327
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/Reconstructor.py
@@ -0,0 +1,598 @@
+# -*- coding: utf-8 -*-
+###############################################################################
+#This work is part of the Core Imaging Library developed by
+#Visual Analytics and Imaging System Group of the Science Technology
+#Facilities Council, STFC
+#
+#Copyright 2017 Edoardo Pasca, Srikanth Nagella
+#Copyright 2017 Daniil Kazantsev
+#
+#Licensed under the Apache License, Version 2.0 (the "License");
+#you may not use this file except in compliance with the License.
+#You may obtain a copy of the License at
+#http://www.apache.org/licenses/LICENSE-2.0
+#Unless required by applicable law or agreed to in writing, software
+#distributed under the License is distributed on an "AS IS" BASIS,
+#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#See the License for the specific language governing permissions and
+#limitations under the License.
+###############################################################################
+
+
+
+import numpy
+import h5py
+from ccpi.reconstruction.parallelbeam import alg
+
+from Regularizer import Regularizer
+from enum import Enum
+
+import astra
+
+
+class Reconstructor:
+    
+    class Algorithm(Enum):
+        CGLS = alg.cgls
+        CGLS_CONV = alg.cgls_conv
+        SIRT = alg.sirt
+        MLEM = alg.mlem
+        CGLS_TICHONOV = alg.cgls_tikhonov
+        CGLS_TVREG = alg.cgls_TVreg
+        FISTA = 'fista'
+        
+    def __init__(self, algorithm = None, projection_data = None,
+                 angles = None, center_of_rotation = None , 
+                 flat_field = None, dark_field = None, 
+                 iterations = None, resolution = None, isLogScale = False, threads = None, 
+                 normalized_projection = None):
+    
+        self.pars = dict()
+        self.pars['algorithm'] = algorithm
+        self.pars['projection_data'] = projection_data
+        self.pars['normalized_projection'] = normalized_projection
+        self.pars['angles'] = angles
+        self.pars['center_of_rotation'] = numpy.double(center_of_rotation)
+        self.pars['flat_field'] = flat_field
+        self.pars['iterations'] = iterations
+        self.pars['dark_field'] = dark_field
+        self.pars['resolution'] = resolution
+        self.pars['isLogScale'] = isLogScale
+        self.pars['threads'] = threads
+        if (iterations != None):
+            self.pars['iterationValues'] = numpy.zeros((iterations)) 
+        
+        if projection_data != None and dark_field != None and flat_field != None:
+            norm = self.normalize(projection_data, dark_field, flat_field, 0.1)
+            self.pars['normalized_projection'] = norm
+            
+    
+    def setPars(self, parameters):
+        keys = ['algorithm','projection_data' ,'normalized_projection', \
+                'angles' , 'center_of_rotation' , 'flat_field', \
+                'iterations','dark_field' , 'resolution', 'isLogScale' , \
+                'threads' , 'iterationValues', 'regularize']
+        
+        for k in keys:
+            if k not in parameters.keys():
+                self.pars[k] = None
+            else:
+                self.pars[k] = parameters[k]
+                
+        
+    def sanityCheck(self):
+        projection_data = self.pars['projection_data']
+        dark_field = self.pars['dark_field']
+        flat_field = self.pars['flat_field']
+        angles = self.pars['angles']
+        
+        if projection_data != None and dark_field != None and \
+            angles != None and flat_field != None:
+            data_shape =  numpy.shape(projection_data)
+            angle_shape = numpy.shape(angles)
+            
+            if angle_shape[0] != data_shape[0]:
+                #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \
+                #                (angle_shape[0] , data_shape[0]) )
+                return (False , 'Projections and angles dimensions do not match: %d vs %d' % \
+                                (angle_shape[0] , data_shape[0]) )
+            
+            if data_shape[1:] != numpy.shape(flat_field):
+                #raise Exception('Projection and flat field dimensions do not match')
+                return (False , 'Projection and flat field dimensions do not match')
+            if data_shape[1:] != numpy.shape(dark_field):
+                #raise Exception('Projection and dark field dimensions do not match')
+                return (False , 'Projection and dark field dimensions do not match')
+            
+            return (True , '' )
+        elif self.pars['normalized_projection'] != None:
+            data_shape =  numpy.shape(self.pars['normalized_projection'])
+            angle_shape = numpy.shape(angles)
+            
+            if angle_shape[0] != data_shape[0]:
+                #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \
+                #                (angle_shape[0] , data_shape[0]) )
+                return (False , 'Projections and angles dimensions do not match: %d vs %d' % \
+                                (angle_shape[0] , data_shape[0]) )
+            else:
+                return (True , '' )
+        else:
+            return (False , 'Not enough data')
+            
+    def reconstruct(self, parameters = None):
+        if parameters != None:
+            self.setPars(parameters)
+        
+        go , reason = self.sanityCheck()
+        if go:
+            return self._reconstruct()
+        else:
+            raise Exception(reason)
+            
+            
+    def _reconstruct(self, parameters=None):
+        if parameters!=None:
+            self.setPars(parameters)
+        parameters = self.pars
+        
+        if parameters['algorithm'] != None and \
+           parameters['normalized_projection'] != None and \
+           parameters['angles'] != None and \
+           parameters['center_of_rotation'] != None and \
+           parameters['iterations'] != None and \
+           parameters['resolution'] != None and\
+           parameters['threads'] != None and\
+           parameters['isLogScale'] != None:
+               
+               
+           if parameters['algorithm'] in (Reconstructor.Algorithm.CGLS,
+                        Reconstructor.Algorithm.MLEM, Reconstructor.Algorithm.SIRT):
+               #store parameters
+               self.pars = parameters
+               result = parameters['algorithm'](
+                           parameters['normalized_projection'] ,
+                           parameters['angles'],
+                           parameters['center_of_rotation'],
+                           parameters['resolution'],
+                           parameters['iterations'],
+                           parameters['threads'] ,
+                           parameters['isLogScale']
+                           )
+               return result
+           elif parameters['algorithm'] in (Reconstructor.Algorithm.CGLS_CONV,
+                          Reconstructor.Algorithm.CGLS_TICHONOV, 
+                          Reconstructor.Algorithm.CGLS_TVREG) :
+               self.pars = parameters
+               result = parameters['algorithm'](
+                           parameters['normalized_projection'] ,
+                           parameters['angles'],
+                           parameters['center_of_rotation'],
+                           parameters['resolution'],
+                           parameters['iterations'],
+                           parameters['threads'] ,
+                           parameters['regularize'],
+                           numpy.zeros((parameters['iterations'])),
+                           parameters['isLogScale']
+                           )
+               
+           elif parameters['algorithm'] == Reconstructor.Algorithm.FISTA:
+               pass
+             
+        else:
+           if parameters['projection_data'] != None and \
+                     parameters['dark_field'] != None and \
+                     parameters['flat_field'] != None:
+               norm = self.normalize(parameters['projection_data'],
+                                   parameters['dark_field'], 
+                                   parameters['flat_field'], 0.1)
+               self.pars['normalized_projection'] = norm
+               return self._reconstruct(parameters)
+              
+                
+                
+    def _normalize(self, projection, dark, flat, def_val=0):
+        a = (projection - dark)
+        b = (flat-dark)
+        with numpy.errstate(divide='ignore', invalid='ignore'):
+            c = numpy.true_divide( a, b )
+            c[ ~ numpy.isfinite( c )] = def_val  # set to not zero if 0/0 
+        return c
+    
+    def normalize(self, projections, dark, flat, def_val=0):
+        norm = [self._normalize(projection, dark, flat, def_val) for projection in projections]
+        return numpy.asarray (norm, dtype=numpy.float32)
+        
+    
+    
+class FISTA():
+    '''FISTA-based reconstruction algorithm using ASTRA-toolbox
+    
+    '''
+    # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>>
+    # ___Input___:
+    # params.[] file:
+    #       - .proj_geom (geometry of the projector) [required]
+    #       - .vol_geom (geometry of the reconstructed object) [required]
+    #       - .sino (vectorized in 2D or 3D sinogram) [required]
+    #       - .iterFISTA (iterations for the main loop, default 40)
+    #       - .L_const (Lipschitz constant, default Power method)                                                                                                    )
+    #       - .X_ideal (ideal image, if given)
+    #       - .weights (statisitcal weights, size of the sinogram)
+    #       - .ROI (Region-of-interest, only if X_ideal is given)
+    #       - .initialize (a 'warm start' using SIRT method from ASTRA)
+    #----------------Regularization choices------------------------
+    #       - .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
+    #       - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
+    #       - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter)
+    #       - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
+    #       - .Regul_Iterations (iterations for the selected penalty, default 25)
+    #       - .Regul_tauLLT (time step parameter for LLT term)
+    #       - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
+    #       - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
+    #----------------Visualization parameters------------------------
+    #       - .show (visualize reconstruction 1/0, (0 default))
+    #       - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
+    #       - .slice (for 3D volumes - slice number to imshow)
+    # ___Output___:
+    # 1. X - reconstructed image/volume
+    # 2. output - a structure with
+    #    - .Resid_error - residual error (if X_ideal is given)
+    #    - .objective: value of the objective function
+    #    - .L_const: Lipshitz constant to avoid recalculations
+    
+    # References:
+    # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
+    # Problems" by A. Beck and M Teboulle
+    # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo
+    # 3. "A novel tomographic reconstruction method based on the robust
+    # Student's t function for suppressing data outliers" D. Kazantsev et.al.
+    # D. Kazantsev, 2016-17
+    def __init__(self, projector_geometry, output_geometry, input_sinogram, **kwargs):
+        self.params = dict()
+        self.params['projector_geometry'] = projector_geometry
+        self.params['output_geometry'] = output_geometry
+        self.params['input_sinogram'] = input_sinogram
+        detectors, nangles, sliceZ = numpy.shape(input_sinogram)
+        self.params['detectors'] = detectors
+        self.params['number_og_angles'] = nangles
+        self.params['SlicesZ'] = sliceZ
+        
+        # Accepted input keywords
+        kw = ('number_of_iterations', 'Lipschitz_constant' , 'ideal_image' ,
+              'weights' , 'region_of_interest' , 'initialize' , 
+              'regularizer' , 
+              'ring_lambda_R_L1',
+              'ring_alpha')
+        
+        # handle keyworded parameters
+        if kwargs is not None:
+            for key, value in kwargs.items():
+                if key in kw:
+                    #print("{0} = {1}".format(key, value))                        
+                    self.pars[key] = value
+                    
+        # set the default values for the parameters if not set
+        if 'number_of_iterations' in kwargs.keys():
+            self.pars['number_of_iterations'] = kwargs['number_of_iterations']
+        else:
+            self.pars['number_of_iterations'] = 40
+        if 'weights' in kwargs.keys():
+            self.pars['weights'] = kwargs['weights']
+        else:
+            self.pars['weights'] = numpy.ones(numpy.shape(self.params['input_sinogram']))
+        if 'Lipschitz_constant' in kwargs.keys():
+            self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant']
+        else:
+            self.pars['Lipschitz_constant'] = self.calculateLipschitzConstantWithPowerMethod()
+        
+        if not self.pars['ideal_image'] in kwargs.keys():
+            self.pars['ideal_image'] = None
+        
+        if not self.pars['region_of_interest'] :
+            if self.pars['ideal_image'] == None:
+                pass
+            else:
+                self.pars['region_of_interest'] = numpy.nonzero(self.pars['ideal_image']>0.0)
+            
+        if not self.pars['regularizer'] :
+            self.pars['regularizer'] = None
+        else:
+            # the regularizer must be a correctly instantiated object
+            if not self.pars['ring_lambda_R_L1']:
+                self.pars['ring_lambda_R_L1'] = 0
+            if not self.pars['ring_alpha']:
+                self.pars['ring_alpha'] = 1
+        
+            
+            
+        
+    def calculateLipschitzConstantWithPowerMethod(self):
+        ''' using Power method (PM) to establish L constant'''
+        
+        #N = params.vol_geom.GridColCount
+        N = self.pars['output_geometry'].GridColCount
+        proj_geom = self.params['projector_geometry']
+        vol_geom = self.params['output_geometry']
+        weights = self.pars['weights']
+        SlicesZ = self.pars['SlicesZ']
+        
+        if (proj_geom['type'] == 'parallel') or (proj_geom['type'] == 'parallel3d'):
+            #% for parallel geometry we can do just one slice
+            #fprintf('%s \n', 'Calculating Lipshitz constant for parallel beam geometry...');
+            niter = 15;# % number of iteration for the PM
+            #N = params.vol_geom.GridColCount;
+            #x1 = rand(N,N,1);
+            x1 = numpy.random.rand(1,N,N)
+            #sqweight = sqrt(weights(:,:,1));
+            sqweight = numpy.sqrt(weights.T[0])
+            proj_geomT = proj_geom.copy();
+            proj_geomT.DetectorRowCount = 1;
+            vol_geomT = vol_geom.copy();
+            vol_geomT['GridSliceCount'] = 1;
+            
+            
+            for i in range(niter):
+                if i == 0:
+                    #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
+                    sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geomT, vol_geomT);
+                    y = sqweight * y # element wise multiplication
+                    #astra_mex_data3d('delete', sino_id);
+                    astra.matlab.data3d('delete', sino_id)
+                    
+                idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, proj_geomT, vol_geomT);
+                s = numpy.linalg.norm(x1)
+                ### this line?
+                x1 = x1/s;
+                ### this line?
+                sino_id, y = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
+                y = sqweight*y;
+                astra.matlab.data3d('delete', sino_id);
+                astra.matlab.data3d('delete', idx);
+            #end
+            del proj_geomT
+            del vol_geomT
+        else
+            #% divergen beam geometry
+            #fprintf('%s \n', 'Calculating Lipshitz constant for divergen beam geometry...');
+            niter = 8; #% number of iteration for PM
+            x1 = numpy.random.rand(SlicesZ , N , N);
+            #sqweight = sqrt(weights);
+            sqweight = numpy.sqrt(weights.T[0])
+            
+            sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom);
+            y = sqweight*y;
+            #astra_mex_data3d('delete', sino_id);
+            astra.matlab.data3d('delete', sino_id);
+            
+            for i in range(niter):
+                #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
+                idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, 
+                                                                    proj_geom, 
+                                                                    vol_geom)
+                s = numpy.linalg.norm(x1)
+                ### this line?
+                x1 = x1/s;
+                ### this line?
+                #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom);
+                sino_id, y = astra.creators.create_sino3d_gpu(x1, 
+                                                              proj_geom, 
+                                                              vol_geom);
+                
+                y = sqweight*y;
+                #astra_mex_data3d('delete', sino_id);
+                #astra_mex_data3d('delete', id);
+                astra.matlab.data3d('delete', sino_id);
+                astra.matlab.data3d('delete', idx);
+            #end
+            #clear x1
+            del x1
+        
+        return s
+    
+    
+    def setRegularizer(self, regularizer):
+        if regularizer
+        self.pars['regularizer'] = regularizer
+        
+    
+    
+
+
+def getEntry(location):
+    for item in nx[location].keys():
+        print (item)
+
+
+print ("Loading Data")
+
+##fname = "D:\\Documents\\Dataset\\IMAT\\20170419_crabtomo\\crabtomo\\Sample\\IMAT00005153_crabstomo_Sample_000.tif"
+####ind = [i * 1049 for i in range(360)]
+#### use only 360 images
+##images = 200
+##ind = [int(i * 1049 / images) for i in range(images)]
+##stack_image = dxchange.reader.read_tiff_stack(fname, ind, digit=None, slc=None)
+
+#fname = "D:\\Documents\\Dataset\\CGLS\\24737_fd.nxs"
+fname = "C:\\Users\\ofn77899\\Documents\\CCPi\\CGLS\\24737_fd_2.nxs"
+nx = h5py.File(fname, "r")
+
+# the data are stored in a particular location in the hdf5
+for item in nx['entry1/tomo_entry/data'].keys():
+    print (item)
+
+data = nx.get('entry1/tomo_entry/data/rotation_angle')
+angles = numpy.zeros(data.shape)
+data.read_direct(angles)
+print (angles)
+# angles should be in degrees
+
+data = nx.get('entry1/tomo_entry/data/data')
+stack = numpy.zeros(data.shape)
+data.read_direct(stack)
+print (data.shape)
+
+print ("Data Loaded")
+
+
+# Normalize
+data = nx.get('entry1/tomo_entry/instrument/detector/image_key')
+itype = numpy.zeros(data.shape)
+data.read_direct(itype)
+# 2 is dark field
+darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ]
+dark = darks[0]
+for i in range(1, len(darks)):
+    dark += darks[i]
+dark = dark / len(darks)
+#dark[0][0] = dark[0][1]
+
+# 1 is flat field
+flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ]
+flat = flats[0]
+for i in range(1, len(flats)):
+    flat += flats[i]
+flat = flat / len(flats)
+#flat[0][0] = dark[0][1]
+
+
+# 0 is projection data
+proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ]
+angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ]
+angle_proj = numpy.asarray (angle_proj)
+angle_proj = angle_proj.astype(numpy.float32)
+
+# normalized data are
+# norm = (projection - dark)/(flat-dark)
+
+def normalize(projection, dark, flat, def_val=0.1):
+    a = (projection - dark)
+    b = (flat-dark)
+    with numpy.errstate(divide='ignore', invalid='ignore'):
+        c = numpy.true_divide( a, b )
+        c[ ~ numpy.isfinite( c )] = def_val  # set to not zero if 0/0 
+    return c
+    
+
+norm = [normalize(projection, dark, flat) for projection in proj]
+norm = numpy.asarray (norm)
+norm = norm.astype(numpy.float32)
+
+#recon = Reconstructor(algorithm = Algorithm.CGLS, normalized_projection = norm,
+#                 angles = angle_proj, center_of_rotation = 86.2 , 
+#                 flat_field = flat, dark_field = dark, 
+#                 iterations = 15, resolution = 1, isLogScale = False, threads = 3)
+
+#recon = Reconstructor(algorithm = Reconstructor.Algorithm.CGLS, projection_data = proj,
+#                 angles = angle_proj, center_of_rotation = 86.2 , 
+#                 flat_field = flat, dark_field = dark, 
+#                 iterations = 15, resolution = 1, isLogScale = False, threads = 3)
+#img_cgls = recon.reconstruct()
+#
+#pars = dict()
+#pars['algorithm'] = Reconstructor.Algorithm.SIRT
+#pars['projection_data'] = proj
+#pars['angles'] = angle_proj
+#pars['center_of_rotation'] = numpy.double(86.2)
+#pars['flat_field'] = flat
+#pars['iterations'] = 15
+#pars['dark_field'] = dark
+#pars['resolution'] = 1
+#pars['isLogScale'] = False
+#pars['threads'] = 3
+#
+#img_sirt = recon.reconstruct(pars)
+#
+#recon.pars['algorithm'] = Reconstructor.Algorithm.MLEM
+#img_mlem = recon.reconstruct()
+
+############################################################
+############################################################
+#recon.pars['algorithm'] = Reconstructor.Algorithm.CGLS_CONV
+#recon.pars['regularize'] = numpy.double(0.1)
+#img_cgls_conv = recon.reconstruct()
+
+niterations = 15
+threads = 3
+
+img_cgls = alg.cgls(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False)
+img_mlem = alg.mlem(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False)
+img_sirt = alg.sirt(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False)
+
+iteration_values = numpy.zeros((niterations,))
+img_cgls_conv = alg.cgls_conv(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads,
+                              iteration_values, False)
+print ("iteration values %s" % str(iteration_values))
+
+iteration_values = numpy.zeros((niterations,))
+img_cgls_tikhonov = alg.cgls_tikhonov(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads,
+                                      numpy.double(1e-5), iteration_values , False)
+print ("iteration values %s" % str(iteration_values))
+iteration_values = numpy.zeros((niterations,))
+img_cgls_TVreg = alg.cgls_TVreg(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads,
+                                      numpy.double(1e-5), iteration_values , False)
+print ("iteration values %s" % str(iteration_values))
+
+
+##numpy.save("cgls_recon.npy", img_data)
+import matplotlib.pyplot as plt
+fig, ax = plt.subplots(1,6,sharey=True)
+ax[0].imshow(img_cgls[80])
+ax[0].axis('off')  # clear x- and y-axes
+ax[1].imshow(img_sirt[80])
+ax[1].axis('off')  # clear x- and y-axes
+ax[2].imshow(img_mlem[80])
+ax[2].axis('off')  # clear x- and y-axesplt.show()
+ax[3].imshow(img_cgls_conv[80])
+ax[3].axis('off')  # clear x- and y-axesplt.show()
+ax[4].imshow(img_cgls_tikhonov[80])
+ax[4].axis('off')  # clear x- and y-axesplt.show()
+ax[5].imshow(img_cgls_TVreg[80])
+ax[5].axis('off')  # clear x- and y-axesplt.show()
+
+
+plt.show()
+
+#viewer = edo.CILViewer()
+#viewer.setInputAsNumpy(img_cgls2)
+#viewer.displaySliceActor(0)
+#viewer.startRenderLoop()
+
+import vtk
+
+def NumpyToVTKImageData(numpyarray):
+    if (len(numpy.shape(numpyarray)) == 3):
+        doubleImg = vtk.vtkImageData()
+        shape = numpy.shape(numpyarray)
+        doubleImg.SetDimensions(shape[0], shape[1], shape[2])
+        doubleImg.SetOrigin(0,0,0)
+        doubleImg.SetSpacing(1,1,1)
+        doubleImg.SetExtent(0, shape[0]-1, 0, shape[1]-1, 0, shape[2]-1)
+        #self.img3D.SetScalarType(vtk.VTK_UNSIGNED_SHORT, vtk.vtkInformation())
+        doubleImg.AllocateScalars(vtk.VTK_DOUBLE,1)
+        
+        for i in range(shape[0]):
+            for j in range(shape[1]):
+                for k in range(shape[2]):
+                    doubleImg.SetScalarComponentFromDouble(
+                        i,j,k,0, numpyarray[i][j][k])
+    #self.setInput3DData( numpy_support.numpy_to_vtk(numpyarray) )
+        # rescale to appropriate VTK_UNSIGNED_SHORT
+        stats = vtk.vtkImageAccumulate()
+        stats.SetInputData(doubleImg)
+        stats.Update()
+        iMin = stats.GetMin()[0]
+        iMax = stats.GetMax()[0]
+        scale = vtk.VTK_UNSIGNED_SHORT_MAX / (iMax - iMin)
+
+        shiftScaler = vtk.vtkImageShiftScale ()
+        shiftScaler.SetInputData(doubleImg)
+        shiftScaler.SetScale(scale)
+        shiftScaler.SetShift(iMin)
+        shiftScaler.SetOutputScalarType(vtk.VTK_UNSIGNED_SHORT)
+        shiftScaler.Update()
+        return shiftScaler.GetOutput()
+        
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetFileName(alg + "_recon.mha")
+#writer.SetInputData(NumpyToVTKImageData(img_cgls2))
+#writer.Write()
diff --git a/Wrappers/Python/compile-fista.bat.in b/Wrappers/Python/compile-fista.bat.in
new file mode 100644
index 0000000..b1db686
--- /dev/null
+++ b/Wrappers/Python/compile-fista.bat.in
@@ -0,0 +1,7 @@
+set CIL_VERSION=@CIL_VERSION@
+
+set PREFIX=@CONDA_ENVIRONMENT_PREFIX@
+set LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@
+
+REM activate @CONDA_ENVIRONMENT@
+conda build fista-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi -c conda-forge
diff --git a/Wrappers/Python/compile-fista.sh.in b/Wrappers/Python/compile-fista.sh.in
new file mode 100644
index 0000000..267f014
--- /dev/null
+++ b/Wrappers/Python/compile-fista.sh.in
@@ -0,0 +1,9 @@
+#!/bin/sh
+# compile within the right conda environment
+#module load python/anaconda
+#source activate @CONDA_ENVIRONMENT@
+
+export CIL_VERSION=@CIL_VERSION@
+export LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@
+
+conda build fista-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi
diff --git a/Wrappers/Python/compile.bat.in b/Wrappers/Python/compile.bat.in
new file mode 100644
index 0000000..e5342ed
--- /dev/null
+++ b/Wrappers/Python/compile.bat.in
@@ -0,0 +1,7 @@
+set CIL_VERSION=@CIL_VERSION@
+
+set PREFIX=@CONDA_ENVIRONMENT_PREFIX@
+set LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@
+
+REM activate @CONDA_ENVIRONMENT@
+conda build conda-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi -c conda-forge
\ No newline at end of file
diff --git a/Wrappers/Python/compile.sh.in b/Wrappers/Python/compile.sh.in
new file mode 100644
index 0000000..93fdba2
--- /dev/null
+++ b/Wrappers/Python/compile.sh.in
@@ -0,0 +1,9 @@
+#!/bin/sh
+# compile within the right conda environment
+#module load python/anaconda
+#source activate @CONDA_ENVIRONMENT@
+
+export CIL_VERSION=@CIL_VERSION@
+export LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@
+
+conda build conda-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi
diff --git a/Wrappers/Python/conda-recipe/bld.bat b/Wrappers/Python/conda-recipe/bld.bat
new file mode 100644
index 0000000..69491de
--- /dev/null
+++ b/Wrappers/Python/conda-recipe/bld.bat
@@ -0,0 +1,14 @@
+IF NOT DEFINED CIL_VERSION (
+ECHO CIL_VERSION Not Defined.
+exit 1
+)
+
+mkdir "%SRC_DIR%\ccpi"
+xcopy /e "%RECIPE_DIR%\..\.." "%SRC_DIR%\ccpi"
+
+cd %SRC_DIR%\ccpi\Python
+
+%PYTHON% setup.py build_ext
+if errorlevel 1 exit 1
+%PYTHON% setup.py install
+if errorlevel 1 exit 1
diff --git a/Wrappers/Python/conda-recipe/build.sh b/Wrappers/Python/conda-recipe/build.sh
new file mode 100644
index 0000000..855047f
--- /dev/null
+++ b/Wrappers/Python/conda-recipe/build.sh
@@ -0,0 +1,14 @@
+
+if [ -z "$CIL_VERSION" ]; then
+    echo "Need to set CIL_VERSION"
+    exit 1
+fi  
+mkdir "$SRC_DIR/ccpi"
+cp -r "$RECIPE_DIR/../.." "$SRC_DIR/ccpi"
+
+cd $SRC_DIR/ccpi/Python
+
+$PYTHON setup.py build_ext
+$PYTHON setup.py install
+
+
diff --git a/Wrappers/Python/conda-recipe/meta.yaml b/Wrappers/Python/conda-recipe/meta.yaml
new file mode 100644
index 0000000..7068e9d
--- /dev/null
+++ b/Wrappers/Python/conda-recipe/meta.yaml
@@ -0,0 +1,30 @@
+package:
+  name: ccpi-regularizers
+  version: {{ environ['CIL_VERSION'] }}
+
+
+build:
+  preserve_egg_dir: False
+  script_env:
+    - CIL_VERSION   
+#  number: 0
+  
+requirements:
+  build:
+    - python
+    - numpy
+    - setuptools
+    - boost ==1.64
+    - boost-cpp ==1.64
+    - cython
+
+  run:
+    - python
+    - numpy
+    - boost ==1.64
+
+	
+about:
+  home: http://www.ccpi.ac.uk
+  license:  BSD license
+  summary: 'CCPi Core Imaging Library Quantification Toolbox'
diff --git a/Wrappers/Python/fista-recipe/bld.bat b/Wrappers/Python/fista-recipe/bld.bat
new file mode 100644
index 0000000..69c2afe
--- /dev/null
+++ b/Wrappers/Python/fista-recipe/bld.bat
@@ -0,0 +1,11 @@
+IF NOT DEFINED CIL_VERSION (
+ECHO CIL_VERSION Not Defined.
+exit 1
+)
+
+xcopy /e "%RECIPE_DIR%\.." "%SRC_DIR%"
+
+%PYTHON% setup.py -q bdist_egg
+:: %PYTHON% setup.py install --single-version-externally-managed --record=record.txt
+%PYTHON% setup.py install
+if errorlevel 1 exit 1
diff --git a/Wrappers/Python/fista-recipe/build.sh b/Wrappers/Python/fista-recipe/build.sh
new file mode 100644
index 0000000..e3f3552
--- /dev/null
+++ b/Wrappers/Python/fista-recipe/build.sh
@@ -0,0 +1,10 @@
+if [ -z "$CIL_VERSION" ]; then
+    echo "Need to set CIL_VERSION"
+    exit 1
+fi  
+mkdir "$SRC_DIR/ccpifista"
+cp -r "$RECIPE_DIR/.." "$SRC_DIR/ccpifista"
+
+cd $SRC_DIR/ccpifista
+
+$PYTHON setup-fista.py install
diff --git a/Wrappers/Python/fista-recipe/meta.yaml b/Wrappers/Python/fista-recipe/meta.yaml
new file mode 100644
index 0000000..265541f
--- /dev/null
+++ b/Wrappers/Python/fista-recipe/meta.yaml
@@ -0,0 +1,29 @@
+package:
+  name: ccpi-fista
+  version: {{ environ['CIL_VERSION'] }}
+
+
+build:
+  preserve_egg_dir: False
+  script_env:
+    - CIL_VERSION   
+#  number: 0
+  
+requirements:
+  build:
+    - python
+    - numpy
+    - setuptools
+ 
+  run:
+    - python
+    - numpy
+    #- astra-toolbox
+    - ccpi-regularizers
+
+
+	
+about:
+  home: http://www.ccpi.ac.uk
+  license:  Apache v.2.0 license
+  summary: 'CCPi Core Imaging Library (Viewer)'
diff --git a/Wrappers/Python/fista_module.cpp b/Wrappers/Python/fista_module.cpp
new file mode 100644
index 0000000..f3add76
--- /dev/null
+++ b/Wrappers/Python/fista_module.cpp
@@ -0,0 +1,1047 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
+
+#include <iostream>
+#include <cmath>
+
+#include <boost/python.hpp>
+#include <boost/python/numpy.hpp>
+#include "boost/tuple/tuple.hpp"
+
+#include "SplitBregman_TV_core.h"
+#include "FGP_TV_core.h"
+#include "LLT_model_core.h"
+#include "PatchBased_Regul_core.h"
+#include "TGV_PD_core.h"
+#include "utils.h"
+
+
+
+#if defined(_WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(_WIN64)
+#include <windows.h>
+// this trick only if compiler is MSVC
+__if_not_exists(uint8_t) { typedef __int8 uint8_t; }
+__if_not_exists(uint16_t) { typedef __int8 uint16_t; }
+#endif
+
+namespace bp = boost::python;
+namespace np = boost::python::numpy;
+
+/*! in the Matlab implementation this is called as
+void mexFunction(
+int nlhs, mxArray *plhs[],
+int nrhs, const mxArray *prhs[])
+where:
+prhs Array of pointers to the INPUT mxArrays
+nrhs int number of INPUT mxArrays
+
+nlhs Array of pointers to the OUTPUT mxArrays
+plhs int number of OUTPUT mxArrays
+
+***********************************************************
+
+***********************************************************
+double mxGetScalar(const mxArray *pm);
+args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray.
+Returns: Pointer to the value of the first real (nonimaginary) element of the mxArray.	In C, mxGetScalar returns a double.
+***********************************************************
+char *mxArrayToString(const mxArray *array_ptr);
+args: array_ptr Pointer to mxCHAR array.
+Returns: C-style string. Returns NULL on failure. Possible reasons for failure include out of memory and specifying an array that is not an mxCHAR array.
+Description: Call mxArrayToString to copy the character data of an mxCHAR array into a C-style string.
+***********************************************************
+mxClassID mxGetClassID(const mxArray *pm);
+args: pm Pointer to an mxArray
+Returns: Numeric identifier of the class (category) of the mxArray that pm points to.For user-defined types,
+mxGetClassId returns a unique value identifying the class of the array contents.
+Use mxIsClass to determine whether an array is of a specific user-defined type.
+
+mxClassID Value	  MATLAB Type   MEX Type	 C Primitive Type
+mxINT8_CLASS 	  int8	        int8_T	     char, byte
+mxUINT8_CLASS	  uint8	        uint8_T	     unsigned char, byte
+mxINT16_CLASS	  int16	        int16_T	     short
+mxUINT16_CLASS	  uint16	    uint16_T	 unsigned short
+mxINT32_CLASS	  int32	        int32_T	     int
+mxUINT32_CLASS	  uint32	    uint32_T	 unsigned int
+mxINT64_CLASS	  int64	        int64_T	     long long
+mxUINT64_CLASS	  uint64	    uint64_T 	 unsigned long long
+mxSINGLE_CLASS	  single	    float	     float
+mxDOUBLE_CLASS	  double	    double	     double
+
+****************************************************************
+double *mxGetPr(const mxArray *pm);
+args: pm Pointer to an mxArray of type double
+Returns: Pointer to the first element of the real data. Returns NULL in C (0 in Fortran) if there is no real data.
+****************************************************************
+mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims,
+mxClassID classid, mxComplexity ComplexFlag);
+args: ndimNumber of dimensions. If you specify a value for ndim that is less than 2, mxCreateNumericArray automatically sets the number of dimensions to 2.
+dims Dimensions array. Each element in the dimensions array contains the size of the array in that dimension.
+For example, in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7 mxArray. Usually there are ndim elements in the dims array.
+classid Identifier for the class of the array, which determines the way the numerical data is represented in memory.
+For example, specifying mxINT16_CLASS in C causes each piece of numerical data in the mxArray to be represented as a 16-bit signed integer.
+ComplexFlag  If the mxArray you are creating is to contain imaginary data, set ComplexFlag to mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in Fortran).
+Returns: Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-MEX file) application, returns NULL in C (0 in Fortran).
+If unsuccessful in a MEX file, the MEX file terminates and returns control to the MATLAB prompt. The function is unsuccessful when there is not
+enough free heap space to create the mxArray.
+*/
+
+
+
+bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) {
+	
+	// the result is in the following list
+	bp::list result;
+		
+	int number_of_dims, dimX, dimY, dimZ, ll, j, count;
+	//const int  *dim_array;
+	float *A, *U = NULL, *U_old = NULL, *Dx = NULL, *Dy = NULL, *Dz = NULL, *Bx = NULL, *By = NULL, *Bz = NULL, lambda, mu, epsil, re, re1, re_old;
+	
+	//number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+	//dim_array = mxGetDimensions(prhs[0]);
+
+	number_of_dims = input.get_nd();
+	int dim_array[3];
+
+	dim_array[0] = input.shape(0);
+	dim_array[1] = input.shape(1);
+	if (number_of_dims == 2) {
+		dim_array[2] = -1;
+	}
+	else {
+		dim_array[2] = input.shape(2);
+	}
+
+	// Parameter handling is be done in Python
+	///*Handling Matlab input data*/
+	//if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
+
+	///*Handling Matlab input data*/
+	//A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */
+	A = reinterpret_cast<float *>(input.get_data());
+
+	//mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */
+	mu = (float)d_mu;
+
+	//iter = 35; /* default iterations number */
+	
+	//epsil = 0.0001; /* default tolerance constant */
+	epsil = (float)d_epsil;
+	//methTV = 0;  /* default isotropic TV penalty */
+	//if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5))  iter = (int)mxGetScalar(prhs[2]); /* iterations number */
+	//if ((nrhs == 4) || (nrhs == 5))  epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */
+	//if (nrhs == 5) {
+	//	char *penalty_type;
+	//	penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+	//	if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+	//	if (strcmp(penalty_type, "l1") == 0)  methTV = 1;  /* enable 'l1' penalty */
+	//	mxFree(penalty_type);
+	//}
+	//if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); }
+
+	lambda = 2.0f*mu;
+	count = 1;
+	re_old = 0.0f;
+	/*Handling Matlab output data*/
+	dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2];
+
+	if (number_of_dims == 2) {
+		dimZ = 1; /*2D case*/
+		//U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		//U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		//Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		//Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		//Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		//By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
+		np::dtype dtype = np::dtype::get_builtin<float>();
+
+		np::ndarray npU = np::zeros(shape, dtype);
+		np::ndarray npU_old = np::zeros(shape, dtype);
+		np::ndarray npDx = np::zeros(shape, dtype);
+		np::ndarray npDy = np::zeros(shape, dtype);
+		np::ndarray npBx = np::zeros(shape, dtype);
+		np::ndarray npBy = np::zeros(shape, dtype);
+
+		U = reinterpret_cast<float *>(npU.get_data());
+		U_old = reinterpret_cast<float *>(npU_old.get_data());
+		Dx = reinterpret_cast<float *>(npDx.get_data());
+		Dy = reinterpret_cast<float *>(npDy.get_data());
+		Bx = reinterpret_cast<float *>(npBx.get_data());
+		By = reinterpret_cast<float *>(npBy.get_data());
+
+
+
+		copyIm(A, U, dimX, dimY, dimZ); /*initialize */
+
+										/* begin outer SB iterations */
+		for (ll = 0; ll < iter; ll++) {
+
+			/*storing old values*/
+			copyIm(U, U_old, dimX, dimY, dimZ);
+
+			/*GS iteration */
+			gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu);
+
+			if (methTV == 1)  updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
+			else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
+
+			updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY);
+
+			/* calculate norm to terminate earlier */
+			re = 0.0f; re1 = 0.0f;
+			for (j = 0; j < dimX*dimY*dimZ; j++)
+			{
+				re += pow(U_old[j] - U[j], 2);
+				re1 += pow(U_old[j], 2);
+			}
+			re = sqrt(re) / sqrt(re1);
+			if (re < epsil)  count++;
+			if (count > 4) break;
+
+			/* check that the residual norm is decreasing */
+			if (ll > 2) {
+				if (re > re_old) break;
+			}
+			re_old = re;
+			/*printf("%f %i %i \n", re, ll, count); */
+
+			/*copyIm(U_old, U, dimX, dimY, dimZ); */
+			
+		}
+		//printf("SB iterations stopped at iteration: %i\n", ll);
+		result.append<np::ndarray>(npU);
+		result.append<int>(ll);
+	}
+	if (number_of_dims == 3) {
+			/*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+			U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+			Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+			Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+			Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+			Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+			By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+			Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/
+			bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]);
+			np::dtype dtype = np::dtype::get_builtin<float>();
+
+			np::ndarray npU     = np::zeros(shape, dtype);
+			np::ndarray npU_old = np::zeros(shape, dtype);
+			np::ndarray npDx    = np::zeros(shape, dtype);
+			np::ndarray npDy    = np::zeros(shape, dtype);
+			np::ndarray npDz    = np::zeros(shape, dtype);
+			np::ndarray npBx    = np::zeros(shape, dtype);
+			np::ndarray npBy    = np::zeros(shape, dtype);
+			np::ndarray npBz    = np::zeros(shape, dtype);
+
+			U     = reinterpret_cast<float *>(npU.get_data());
+			U_old = reinterpret_cast<float *>(npU_old.get_data());
+			Dx    = reinterpret_cast<float *>(npDx.get_data());
+			Dy    = reinterpret_cast<float *>(npDy.get_data());
+			Dz    = reinterpret_cast<float *>(npDz.get_data());
+			Bx    = reinterpret_cast<float *>(npBx.get_data());
+			By    = reinterpret_cast<float *>(npBy.get_data());
+			Bz    = reinterpret_cast<float *>(npBz.get_data());
+
+			copyIm(A, U, dimX, dimY, dimZ); /*initialize */
+
+											/* begin outer SB iterations */
+			for (ll = 0; ll<iter; ll++) {
+
+				/*storing old values*/
+				copyIm(U, U_old, dimX, dimY, dimZ);
+
+				/*GS iteration */
+				gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu);
+
+				if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
+				else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
+
+				updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ);
+
+				/* calculate norm to terminate earlier */
+				re = 0.0f; re1 = 0.0f;
+				for (j = 0; j<dimX*dimY*dimZ; j++)
+				{
+					re += pow(U[j] - U_old[j], 2);
+					re1 += pow(U[j], 2);
+				}
+				re = sqrt(re) / sqrt(re1);
+				if (re < epsil)  count++;
+				if (count > 4) break;
+
+				/* check that the residual norm is decreasing */
+				if (ll > 2) {
+					if (re > re_old) break;
+				}
+				/*printf("%f %i %i \n", re, ll, count); */
+				re_old = re;
+			}
+			//printf("SB iterations stopped at iteration: %i\n", ll);
+			result.append<np::ndarray>(npU);
+			result.append<int>(ll);
+		}
+	return result;
+
+	}
+
+
+
+bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) {
+
+	// the result is in the following list
+	bp::list result;
+
+	int number_of_dims, dimX, dimY, dimZ, ll, j, count;
+	float *A, *D = NULL, *D_old = NULL, *P1 = NULL, *P2 = NULL, *P3 = NULL, *P1_old = NULL, *P2_old = NULL, *P3_old = NULL, *R1 = NULL, *R2 = NULL, *R3 = NULL;
+	float lambda, tk, tkp1, re, re1, re_old, epsil, funcval;
+
+	//number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+	//dim_array = mxGetDimensions(prhs[0]);
+
+	number_of_dims = input.get_nd();
+	int dim_array[3];
+
+	dim_array[0] = input.shape(0);
+	dim_array[1] = input.shape(1);
+	if (number_of_dims == 2) {
+		dim_array[2] = -1;
+	}
+	else {
+		dim_array[2] = input.shape(2);
+	}
+	// Parameter handling is be done in Python
+	///*Handling Matlab input data*/
+	//if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
+
+	///*Handling Matlab input data*/
+	//A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */
+	A = reinterpret_cast<float *>(input.get_data());
+
+	//mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */
+	lambda = (float)d_mu;
+
+	//iter = 35; /* default iterations number */
+
+	//epsil = 0.0001; /* default tolerance constant */
+	epsil = (float)d_epsil;
+	//methTV = 0;  /* default isotropic TV penalty */
+	//if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5))  iter = (int)mxGetScalar(prhs[2]); /* iterations number */
+	//if ((nrhs == 4) || (nrhs == 5))  epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */
+	//if (nrhs == 5) {
+	//	char *penalty_type;
+	//	penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+	//	if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+	//	if (strcmp(penalty_type, "l1") == 0)  methTV = 1;  /* enable 'l1' penalty */
+	//	mxFree(penalty_type);
+	//}
+	//if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); }
+
+	//plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);
+	bp::tuple shape1 = bp::make_tuple(dim_array[0], dim_array[1]);
+	np::dtype dtype = np::dtype::get_builtin<float>();
+	np::ndarray out1 = np::zeros(shape1, dtype);
+	
+	//float *funcvalA = (float *)mxGetData(plhs[1]);
+	float * funcvalA = reinterpret_cast<float *>(out1.get_data());
+	//if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); }
+
+	/*Handling Matlab output data*/
+	dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+
+	tk = 1.0f;
+	tkp1 = 1.0f;
+	count = 1;
+	re_old = 0.0f;
+
+	if (number_of_dims == 2) {
+		dimZ = 1; /*2D case*/
+		/*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/
+
+		bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
+		np::dtype dtype = np::dtype::get_builtin<float>();
+
+
+		np::ndarray npD      = np::zeros(shape, dtype);
+		np::ndarray npD_old  = np::zeros(shape, dtype);
+		np::ndarray npP1     = np::zeros(shape, dtype);
+		np::ndarray npP2     = np::zeros(shape, dtype);
+		np::ndarray npP1_old = np::zeros(shape, dtype);
+		np::ndarray npP2_old = np::zeros(shape, dtype);
+		np::ndarray npR1     = np::zeros(shape, dtype);
+		np::ndarray npR2     = np::zeros(shape, dtype);
+
+		D      = reinterpret_cast<float *>(npD.get_data());
+		D_old  = reinterpret_cast<float *>(npD_old.get_data());
+		P1     = reinterpret_cast<float *>(npP1.get_data());
+		P2     = reinterpret_cast<float *>(npP2.get_data());
+		P1_old = reinterpret_cast<float *>(npP1_old.get_data());
+		P2_old = reinterpret_cast<float *>(npP2_old.get_data());
+		R1     = reinterpret_cast<float *>(npR1.get_data());
+		R2     = reinterpret_cast<float *>(npR2.get_data());
+
+		/* begin iterations */
+		for (ll = 0; ll<iter; ll++) {
+			/* computing the gradient of the objective function */
+			Obj_func2D(A, D, R1, R2, lambda, dimX, dimY);
+
+			/*Taking a step towards minus of the gradient*/
+			Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY);
+
+
+
+
+			/*updating R and t*/
+			tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
+			Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY);
+
+			/* calculate norm */
+			re = 0.0f; re1 = 0.0f;
+			for (j = 0; j<dimX*dimY*dimZ; j++)
+			{
+				re += pow(D[j] - D_old[j], 2);
+				re1 += pow(D[j], 2);
+			}
+			re = sqrt(re) / sqrt(re1);
+			if (re < epsil)  count++;
+			if (count > 3) {
+				Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
+				funcval = 0.0f;
+				for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+				//funcvalA[0] = sqrt(funcval);
+				float fv = sqrt(funcval);
+				std::memcpy(funcvalA, &fv, sizeof(float));
+				break;
+			}
+
+			/* check that the residual norm is decreasing */
+			if (ll > 2) {
+				if (re > re_old) {
+					Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
+					funcval = 0.0f;
+					for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+					//funcvalA[0] = sqrt(funcval);
+					float fv = sqrt(funcval);
+					std::memcpy(funcvalA, &fv, sizeof(float));
+					break;
+				}
+			}
+			re_old = re;
+			/*printf("%f %i %i \n", re, ll, count); */
+
+			/*storing old values*/
+			copyIm(D, D_old, dimX, dimY, dimZ);
+			copyIm(P1, P1_old, dimX, dimY, dimZ);
+			copyIm(P2, P2_old, dimX, dimY, dimZ);
+			tk = tkp1;
+
+			/* calculating the objective function value */
+			if (ll == (iter - 1)) {
+				Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
+				funcval = 0.0f;
+				for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+				//funcvalA[0] = sqrt(funcval);
+				float fv = sqrt(funcval);
+				std::memcpy(funcvalA, &fv, sizeof(float));
+			}
+		}
+		//printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
+		result.append<np::ndarray>(npD);
+		result.append<np::ndarray>(out1);
+		result.append<int>(ll);
+	}
+	if (number_of_dims == 3) {
+		/*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/
+		bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]);
+		np::dtype dtype = np::dtype::get_builtin<float>();
+		
+		np::ndarray npD      = np::zeros(shape, dtype);
+		np::ndarray npD_old  = np::zeros(shape, dtype);
+		np::ndarray npP1     = np::zeros(shape, dtype);
+		np::ndarray npP2     = np::zeros(shape, dtype);
+		np::ndarray npP3     = np::zeros(shape, dtype);
+		np::ndarray npP1_old = np::zeros(shape, dtype);
+		np::ndarray npP2_old = np::zeros(shape, dtype);
+		np::ndarray npP3_old = np::zeros(shape, dtype);
+		np::ndarray npR1     = np::zeros(shape, dtype);
+		np::ndarray npR2     = np::zeros(shape, dtype);
+		np::ndarray npR3     = np::zeros(shape, dtype);
+
+		D      = reinterpret_cast<float *>(npD.get_data());
+		D_old  = reinterpret_cast<float *>(npD_old.get_data());
+		P1     = reinterpret_cast<float *>(npP1.get_data());
+		P2     = reinterpret_cast<float *>(npP2.get_data());
+		P3     = reinterpret_cast<float *>(npP3.get_data());
+		P1_old = reinterpret_cast<float *>(npP1_old.get_data());
+		P2_old = reinterpret_cast<float *>(npP2_old.get_data());
+		P3_old = reinterpret_cast<float *>(npP3_old.get_data());
+		R1     = reinterpret_cast<float *>(npR1.get_data());
+		R2     = reinterpret_cast<float *>(npR2.get_data());
+		R3     = reinterpret_cast<float *>(npR3.get_data());
+		/* begin iterations */
+		for (ll = 0; ll<iter; ll++) {
+			/* computing the gradient of the objective function */
+			Obj_func3D(A, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
+			/*Taking a step towards minus of the gradient*/
+			Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
+
+			/* projection step */
+			Proj_func3D(P1, P2, P3, dimX, dimY, dimZ);
+
+			/*updating R and t*/
+			tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
+			Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ);
+
+			/* calculate norm - stopping rules*/
+			re = 0.0f; re1 = 0.0f;
+			for (j = 0; j<dimX*dimY*dimZ; j++)
+			{
+				re += pow(D[j] - D_old[j], 2);
+				re1 += pow(D[j], 2);
+			}
+			re = sqrt(re) / sqrt(re1);
+			/* stop if the norm residual is less than the tolerance EPS */
+			if (re < epsil)  count++;
+			if (count > 3) {
+				Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ);
+				funcval = 0.0f;
+				for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+				//funcvalA[0] = sqrt(funcval);
+				float fv = sqrt(funcval);
+				std::memcpy(funcvalA, &fv, sizeof(float));
+				break;
+			}
+
+			/* check that the residual norm is decreasing */
+			if (ll > 2) {
+				if (re > re_old) {
+					Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ);
+					funcval = 0.0f;
+					for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+					//funcvalA[0] = sqrt(funcval);
+					float fv = sqrt(funcval);
+					std::memcpy(funcvalA, &fv, sizeof(float));
+					break;
+				}
+			}
+
+			re_old = re;
+			/*printf("%f %i %i \n", re, ll, count); */
+
+			/*storing old values*/
+			copyIm(D, D_old, dimX, dimY, dimZ);
+			copyIm(P1, P1_old, dimX, dimY, dimZ);
+			copyIm(P2, P2_old, dimX, dimY, dimZ);
+			copyIm(P3, P3_old, dimX, dimY, dimZ);
+			tk = tkp1;
+
+			if (ll == (iter - 1)) {
+				Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ);
+				funcval = 0.0f;
+				for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+				//funcvalA[0] = sqrt(funcval);
+				float fv = sqrt(funcval);
+				std::memcpy(funcvalA, &fv, sizeof(float));
+			}
+
+		}
+		//printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
+		result.append<np::ndarray>(npD);
+		result.append<np::ndarray>(out1);
+		result.append<int>(ll);
+	}
+
+	return result;
+}
+
+bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) {
+	// the result is in the following list
+	bp::list result;
+
+	int number_of_dims, dimX, dimY, dimZ, ll, j, count;
+	//const int  *dim_array;
+	float *U0, *U = NULL, *U_old = NULL, *D1 = NULL, *D2 = NULL, *D3 = NULL, lambda, tau, re, re1, epsil, re_old;
+	unsigned short *Map = NULL;
+
+	number_of_dims = input.get_nd();
+	int dim_array[3];
+
+	dim_array[0] = input.shape(0);
+	dim_array[1] = input.shape(1);
+	if (number_of_dims == 2) {
+		dim_array[2] = -1;
+	}
+	else {
+		dim_array[2] = input.shape(2);
+	}
+
+	///*Handling Matlab input data*/
+	//U0 = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/
+	//if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); }
+	//lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/
+	//tau = (float)mxGetScalar(prhs[2]); /* time-step */
+	//iter = (int)mxGetScalar(prhs[3]); /*iterations number*/
+	//epsil = (float)mxGetScalar(prhs[4]); /* tolerance constant */
+	//switcher = (int)mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/
+	
+	U0 = reinterpret_cast<float *>(input.get_data());
+	lambda = (float)d_lambda;
+	tau = (float)d_tau;
+	// iter is passed as parameter
+	epsil = (float)d_epsil;
+	// switcher is passed as parameter
+										  /*Handling Matlab output data*/
+	dimX = dim_array[0]; dimY = dim_array[1];  dimZ = 1;
+
+	if (number_of_dims == 2) {
+		/*2D case*/
+		/*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/
+
+		bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
+		np::dtype dtype = np::dtype::get_builtin<float>();
+
+
+		np::ndarray npU = np::zeros(shape, dtype);
+		np::ndarray npU_old = np::zeros(shape, dtype);
+		np::ndarray npD1 = np::zeros(shape, dtype);
+		np::ndarray npD2 = np::zeros(shape, dtype);
+		
+
+		U = reinterpret_cast<float *>(npU.get_data());
+		U_old = reinterpret_cast<float *>(npU_old.get_data());
+		D1 = reinterpret_cast<float *>(npD1.get_data());
+		D2 = reinterpret_cast<float *>(npD2.get_data());
+		
+		/*Copy U0 to U*/
+		copyIm(U0, U, dimX, dimY, dimZ);
+
+		count = 1;
+		re_old = 0.0f;
+
+		for (ll = 0; ll < iter; ll++) {
+
+			copyIm(U, U_old, dimX, dimY, dimZ);
+
+			/*estimate inner derrivatives */
+			der2D(U, D1, D2, dimX, dimY, dimZ);
+			/* calculate div^2 and update */
+			div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau);
+
+			/* calculate norm to terminate earlier */
+			re = 0.0f; re1 = 0.0f;
+			for (j = 0; j<dimX*dimY*dimZ; j++)
+			{
+				re += pow(U_old[j] - U[j], 2);
+				re1 += pow(U_old[j], 2);
+			}
+			re = sqrt(re) / sqrt(re1);
+			if (re < epsil)  count++;
+			if (count > 4) break;
+
+			/* check that the residual norm is decreasing */
+			if (ll > 2) {
+				if (re > re_old) break;
+			}
+			re_old = re;
+
+		} /*end of iterations*/
+		  //printf("HO iterations stopped at iteration: %i\n", ll);
+
+		result.append<np::ndarray>(npU);
+	}
+	else if (number_of_dims == 3) {
+		/*3D case*/
+		dimZ = dim_array[2];
+		/*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+		if (switcher != 0) {
+			Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
+		}*/
+		bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]);
+		np::dtype dtype = np::dtype::get_builtin<float>();
+
+
+		np::ndarray npU = np::zeros(shape, dtype);
+		np::ndarray npU_old = np::zeros(shape, dtype);
+		np::ndarray npD1 = np::zeros(shape, dtype);
+		np::ndarray npD2 = np::zeros(shape, dtype);
+		np::ndarray npD3 = np::zeros(shape, dtype);
+		np::ndarray npMap = np::zeros(shape, np::dtype::get_builtin<unsigned short>());
+		Map = reinterpret_cast<unsigned short *>(npMap.get_data());
+		if (switcher != 0) {
+			//Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
+			
+			Map = reinterpret_cast<unsigned short *>(npMap.get_data());
+		}
+
+		U = reinterpret_cast<float *>(npU.get_data());
+		U_old = reinterpret_cast<float *>(npU_old.get_data());
+		D1 = reinterpret_cast<float *>(npD1.get_data());
+		D2 = reinterpret_cast<float *>(npD2.get_data());
+		D3 = reinterpret_cast<float *>(npD2.get_data());
+		
+		/*Copy U0 to U*/
+		copyIm(U0, U, dimX, dimY, dimZ);
+
+		count = 1;
+		re_old = 0.0f;
+	
+
+		if (switcher == 1) {
+			/* apply restrictive smoothing */
+			calcMap(U, Map, dimX, dimY, dimZ);
+			/*clear outliers */
+			cleanMap(Map, dimX, dimY, dimZ);
+		}
+		for (ll = 0; ll < iter; ll++) {
+
+			copyIm(U, U_old, dimX, dimY, dimZ);
+
+			/*estimate inner derrivatives */
+			der3D(U, D1, D2, D3, dimX, dimY, dimZ);
+			/* calculate div^2 and update */
+			div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau);
+
+			/* calculate norm to terminate earlier */
+			re = 0.0f; re1 = 0.0f;
+			for (j = 0; j<dimX*dimY*dimZ; j++)
+			{
+				re += pow(U_old[j] - U[j], 2);
+				re1 += pow(U_old[j], 2);
+			}
+			re = sqrt(re) / sqrt(re1);
+			if (re < epsil)  count++;
+			if (count > 4) break;
+
+			/* check that the residual norm is decreasing */
+			if (ll > 2) {
+				if (re > re_old) break;
+			}
+			re_old = re;
+
+		} /*end of iterations*/
+		//printf("HO iterations stopped at iteration: %i\n", ll);
+		result.append<np::ndarray>(npU);
+		if (switcher != 0) result.append<np::ndarray>(npMap);
+
+	}
+	return result;
+}
+
+
+bp::list PatchBased_Regul(np::ndarray input, double d_lambda, int SearchW_real, int SimilW,  double d_h) {
+	// the result is in the following list
+	bp::list result;
+
+	int N, M, Z, numdims, SearchW, /*SimilW, SearchW_real,*/ padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop;
+	//const int  *dims;
+	float *A, *B = NULL, *Ap = NULL, *Bp = NULL, h, lambda;
+
+	numdims = input.get_nd();
+	int dims[3];
+
+	dims[0] = input.shape(0);
+	dims[1] = input.shape(1);
+	if (numdims == 2) {
+		dims[2] = -1;
+	}
+	else {
+		dims[2] = input.shape(2);
+	}
+	/*numdims = mxGetNumberOfDimensions(prhs[0]);
+	dims = mxGetDimensions(prhs[0]);*/
+
+	N = dims[0];
+	M = dims[1];
+	Z = dims[2];
+
+	//if ((numdims < 2) || (numdims > 3)) { mexErrMsgTxt("The input should be 2D image or 3D volume"); }
+	//if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); }
+
+	//if (nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
+
+	///*Handling inputs*/
+	//A = (float *)mxGetData(prhs[0]);    /* the image to regularize/filter */
+	A = reinterpret_cast<float *>(input.get_data());
+	//SearchW_real = (int)mxGetScalar(prhs[1]); /* the searching window ratio */
+	//SimilW = (int)mxGetScalar(prhs[2]);  /* the similarity window ratio */
+	//h = (float)mxGetScalar(prhs[3]);  /* parameter for the PB filtering function */
+	//lambda = (float)mxGetScalar(prhs[4]); /* regularization parameter */
+
+	//if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
+	//if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0");
+
+	lambda = (float)d_lambda;
+	h = (float)d_h;
+	SearchW = SearchW_real + 2 * SimilW;
+
+	/* SearchW_full = 2*SearchW + 1; */ /* the full searching window  size */
+										/* SimilW_full = 2*SimilW + 1;  */  /* the full similarity window  size */
+
+
+	padXY = SearchW + 2 * SimilW; /* padding sizes */
+	newsizeX = N + 2 * (padXY); /* the X size of the padded array */
+	newsizeY = M + 2 * (padXY); /* the Y size of the padded array */
+	newsizeZ = Z + 2 * (padXY); /* the Z size of the padded array */
+	int N_dims[] = { newsizeX, newsizeY, newsizeZ };
+	/******************************2D case ****************************/
+	if (numdims == 2) {
+		///*Handling output*/
+		//B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
+		///*allocating memory for the padded arrays */
+		//Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+		//Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+		///**************************************************************************/
+
+		bp::tuple shape = bp::make_tuple(N, M);
+		np::dtype dtype = np::dtype::get_builtin<float>();
+
+		np::ndarray npB = np::zeros(shape, dtype);
+
+		shape = bp::make_tuple(newsizeX, newsizeY);
+		np::ndarray npAp = np::zeros(shape, dtype);
+		np::ndarray npBp = np::zeros(shape, dtype);
+		B = reinterpret_cast<float *>(npB.get_data());
+		Ap = reinterpret_cast<float *>(npAp.get_data());
+		Bp = reinterpret_cast<float *>(npBp.get_data());		
+
+		/*Perform padding of image A to the size of [newsizeX * newsizeY] */
+		switchpad_crop = 0; /*padding*/
+		pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+		
+		/* Do PB regularization with the padded array  */
+		PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda);
+		
+		switchpad_crop = 1; /*cropping*/
+		pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+		
+		result.append<np::ndarray>(npB);
+	}
+	else
+	{
+		/******************************3D case ****************************/
+		///*Handling output*/
+		//B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
+		///*allocating memory for the padded arrays */
+		//Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+		//Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+		/**************************************************************************/
+		bp::tuple shape = bp::make_tuple(dims[0], dims[1], dims[2]);
+		bp::tuple shape_AB = bp::make_tuple(N_dims[0], N_dims[1], N_dims[2]);
+		np::dtype dtype = np::dtype::get_builtin<float>();
+
+		np::ndarray npB = np::zeros(shape, dtype);
+		np::ndarray npAp = np::zeros(shape_AB, dtype);
+		np::ndarray npBp = np::zeros(shape_AB, dtype);
+		B = reinterpret_cast<float *>(npB.get_data());
+		Ap = reinterpret_cast<float *>(npAp.get_data());
+		Bp = reinterpret_cast<float *>(npBp.get_data());
+		/*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
+		switchpad_crop = 0; /*padding*/
+		pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+
+		/* Do PB regularization with the padded array  */
+		PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda);
+
+		switchpad_crop = 1; /*cropping*/
+		pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+
+		result.append<np::ndarray>(npB);
+	} /*end else ndims*/
+
+	return result;
+}
+
+bp::list TGV_PD(np::ndarray input, double d_lambda, double d_alpha1, double d_alpha0, int iter) {
+	// the result is in the following list
+	bp::list result;
+	int number_of_dims, /*iter,*/ dimX, dimY, dimZ, ll;
+	//const int  *dim_array;
+	float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0;
+
+	//number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+	//dim_array = mxGetDimensions(prhs[0]);
+	number_of_dims = input.get_nd();
+	int dim_array[3];
+
+	dim_array[0] = input.shape(0);
+	dim_array[1] = input.shape(1);
+	if (number_of_dims == 2) {
+		dim_array[2] = -1;
+	}
+	else {
+		dim_array[2] = input.shape(2);
+	}
+	/*Handling Matlab input data*/
+	//A = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/
+	//if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); }
+	
+	A = reinterpret_cast<float *>(input.get_data());
+
+	//lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/
+	//alpha1 = (float)mxGetScalar(prhs[2]); /*first-order term*/
+	//alpha0 = (float)mxGetScalar(prhs[3]); /*second-order term*/
+	//iter = (int)mxGetScalar(prhs[4]); /*iterations number*/
+	//if (nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations");
+	lambda = (float)d_lambda;
+	alpha1 = (float)d_alpha1;
+	alpha0 = (float)d_alpha0;
+
+	/*Handling Matlab output data*/
+	dimX = dim_array[0]; dimY = dim_array[1];
+
+	if (number_of_dims == 2) {
+		/*2D case*/
+		dimZ = 1;
+		bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
+		np::dtype dtype = np::dtype::get_builtin<float>();
+
+		np::ndarray npU = np::zeros(shape, dtype);
+		np::ndarray npP1 = np::zeros(shape, dtype);
+		np::ndarray npP2 = np::zeros(shape, dtype);
+		np::ndarray npQ1 = np::zeros(shape, dtype);
+		np::ndarray npQ2 = np::zeros(shape, dtype);
+		np::ndarray npQ3 = np::zeros(shape, dtype);
+		np::ndarray npV1 = np::zeros(shape, dtype);
+		np::ndarray npV1_old = np::zeros(shape, dtype);
+		np::ndarray npV2 = np::zeros(shape, dtype);
+		np::ndarray npV2_old = np::zeros(shape, dtype);
+		np::ndarray npU_old = np::zeros(shape, dtype);
+
+		U = reinterpret_cast<float *>(npU.get_data());
+		U_old = reinterpret_cast<float *>(npU_old.get_data());
+		P1 = reinterpret_cast<float *>(npP1.get_data());
+		P2 = reinterpret_cast<float *>(npP2.get_data());
+		Q1 = reinterpret_cast<float *>(npQ1.get_data());
+		Q2 = reinterpret_cast<float *>(npQ2.get_data());
+		Q3 = reinterpret_cast<float *>(npQ3.get_data());
+		V1 = reinterpret_cast<float *>(npV1.get_data());
+		V1_old = reinterpret_cast<float *>(npV1_old.get_data());
+		V2 = reinterpret_cast<float *>(npV2.get_data());
+		V2_old = reinterpret_cast<float *>(npV2_old.get_data());
+		//U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+		/*dual variables*/
+		/*P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+		Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+		U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+		V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+		V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/
+		/*printf("%i \n", i);*/
+		L2 = 12.0; /*Lipshitz constant*/
+		tau = 1.0 / pow(L2, 0.5);
+		sigma = 1.0 / pow(L2, 0.5);
+
+		/*Copy A to U*/
+		copyIm(A, U, dimX, dimY, dimZ);
+		/* Here primal-dual iterations begin for 2D */
+		for (ll = 0; ll < iter; ll++) {
+
+			/* Calculate Dual Variable P */
+			DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma);
+
+			/*Projection onto convex set for P*/
+			ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1);
+
+			/* Calculate Dual Variable Q */
+			DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma);
+
+			/*Projection onto convex set for Q*/
+			ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0);
+
+			/*saving U into U_old*/
+			copyIm(U, U_old, dimX, dimY, dimZ);
+
+			/*adjoint operation  -> divergence and projection of P*/
+			DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau);
+
+			/*get updated solution U*/
+			newU(U, U_old, dimX, dimY, dimZ);
+
+			/*saving V into V_old*/
+			copyIm(V1, V1_old, dimX, dimY, dimZ);
+			copyIm(V2, V2_old, dimX, dimY, dimZ);
+
+			/* upd V*/
+			UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau);
+
+			/*get new V*/
+			newU(V1, V1_old, dimX, dimY, dimZ);
+			newU(V2, V2_old, dimX, dimY, dimZ);
+		} /*end of iterations*/
+	
+		result.append<np::ndarray>(npU);
+	}
+	
+
+	
+	
+	return result;
+}
+
+BOOST_PYTHON_MODULE(cpu_regularizers)
+{
+	np::initialize();
+
+	//To specify that this module is a package
+	bp::object package = bp::scope();
+	package.attr("__path__") = "cpu_regularizers";
+
+	np::dtype dt1 = np::dtype::get_builtin<uint8_t>();
+	np::dtype dt2 = np::dtype::get_builtin<uint16_t>();
+
+	def("SplitBregman_TV", SplitBregman_TV);
+	def("FGP_TV", FGP_TV);
+	def("LLT_model", LLT_model);
+	def("PatchBased_Regul", PatchBased_Regul);
+	def("TGV_PD", TGV_PD);
+}
diff --git a/Wrappers/Python/setup-fista.py.in b/Wrappers/Python/setup-fista.py.in
new file mode 100644
index 0000000..c5c9f4d
--- /dev/null
+++ b/Wrappers/Python/setup-fista.py.in
@@ -0,0 +1,27 @@
+from distutils.core import setup
+#from setuptools import setup, find_packages
+import os
+
+cil_version=os.environ['CIL_VERSION']
+if  cil_version == '':
+    print("Please set the environmental variable CIL_VERSION")
+    sys.exit(1)
+
+setup(
+    name="ccpi-fista",
+    version=cil_version,
+    packages=['ccpi','ccpi.reconstruction'],
+	install_requires=['numpy'],
+
+     zip_safe = False,
+
+    # metadata for upload to PyPI
+    author="Edoardo Pasca",
+    author_email="edo.paskino@gmail.com",
+    description='CCPi Core Imaging Library - FISTA Reconstructor module',
+    license="Apache v2.0",
+    keywords="tomography interative reconstruction",
+    url="http://www.ccpi.ac.uk",   # project home page, if any
+
+    # could also include long_description, download_url, classifiers, etc.
+)
diff --git a/Wrappers/Python/setup.py.in b/Wrappers/Python/setup.py.in
new file mode 100644
index 0000000..12e8af1
--- /dev/null
+++ b/Wrappers/Python/setup.py.in
@@ -0,0 +1,69 @@
+#!/usr/bin/env python
+
+import setuptools
+from distutils.core import setup
+from distutils.extension import Extension
+from Cython.Distutils import build_ext
+
+import os
+import sys
+import numpy
+import platform	
+
+cil_version=@CIL_VERSION@
+
+library_include_path = ""
+library_lib_path = ""
+try:
+    library_include_path = os.environ['LIBRARY_INC']
+    library_lib_path = os.environ['LIBRARY_LIB']
+except:
+    library_include_path = os.environ['PREFIX']+'/include'
+    pass
+    
+extra_include_dirs = [numpy.get_include(), library_include_path]
+extra_library_dirs = [os.path.join(library_include_path, "..", "lib")]
+extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x']
+extra_libraries = []
+extra_include_dirs += [os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" ,  "regularizers_CPU"),
+                       	   os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" ,  "regularizers_GPU") , 
+						   "@CMAKE_CURRENT_SOURCE_DIR@"]
+						   
+if platform.system() == 'Windows':
+    extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ]   
+    
+    if sys.version_info.major == 3 :   
+        extra_libraries += ['boost_python3-vc140-mt-1_64', 'boost_numpy3-vc140-mt-1_64']
+    else:
+        extra_libraries += ['boost_python-vc90-mt-1_64', 'boost_numpy-vc90-mt-1_64']
+else:
+    if sys.version_info.major == 3:
+        extra_libraries += ['boost_python3', 'boost_numpy3','gomp']
+    else:
+        extra_libraries += ['boost_python', 'boost_numpy','gomp']
+
+setup(
+    name='ccpi',
+	description='CCPi Core Imaging Library - Image Regularizers',
+	version=cil_version,
+    cmdclass = {'build_ext': build_ext},
+    ext_modules = [Extension("ccpi.imaging.cpu_regularizers",
+                             sources=[os.path.join("@CMAKE_CURRENT_SOURCE_DIR@" , "fista_module.cpp" ),
+                                      os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" ,  "regularizers_CPU", "FGP_TV_core.c"),
+									  os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" ,  "regularizers_CPU", "SplitBregman_TV_core.c"),
+									  os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" ,  "regularizers_CPU", "LLT_model_core.c"),
+									  os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" ,  "regularizers_CPU", "PatchBased_Regul_core.c"),
+									  os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" ,  "regularizers_CPU", "TGV_PD_core.c"),
+									  os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" ,  "regularizers_CPU", "utils.c")
+                                        ],
+                             include_dirs=extra_include_dirs, 
+							 library_dirs=extra_library_dirs, 
+							 extra_compile_args=extra_compile_args, 
+							 libraries=extra_libraries ), 
+    
+    ],
+	zip_safe = False,	
+	packages = {'ccpi','ccpi.imaging'},
+)
+
+
diff --git a/Wrappers/Python/test/astra_test.py b/Wrappers/Python/test/astra_test.py
new file mode 100644
index 0000000..42c375a
--- /dev/null
+++ b/Wrappers/Python/test/astra_test.py
@@ -0,0 +1,85 @@
+import astra
+import numpy
+import filefun
+
+
+# read in the same data as the DemoRD2
+angles = filefun.dlmread("DemoRD2/angles.csv")
+darks_ar = filefun.dlmread("DemoRD2/darks_ar.csv", separator=",")
+flats_ar = filefun.dlmread("DemoRD2/flats_ar.csv", separator=",")
+
+if True:
+    Sino3D = numpy.load("DemoRD2/Sino3D.npy")
+else:
+    sino = filefun.dlmread("DemoRD2/sino_01.csv", separator=",")
+    a = map (lambda x:x, numpy.shape(sino))
+    a.append(20)
+
+    Sino3D = numpy.zeros(tuple(a), dtype="float")
+
+    for i in range(1,numpy.shape(Sino3D)[2]+1):
+        print("Read file DemoRD2/sino_%02d.csv" % i)
+        sino = filefun.dlmread("DemoRD2/sino_%02d.csv" % i, separator=",")
+        Sino3D.T[i-1] = sino.T
+    
+Weights3D = numpy.asarray(Sino3D, dtype="float")
+
+##angles_rad = angles*(pi/180); % conversion to radians
+##size_det = size(data_raw3D,1); % detectors dim
+##angSize = size(data_raw3D, 2); % angles dim
+##slices_tot = size(data_raw3D, 3); % no of slices
+##recon_size = 950; % reconstruction size
+
+
+angles_rad = angles * numpy.pi /180.
+size_det, angSize, slices_tot = numpy.shape(Sino3D)
+size_det, angSize, slices_tot = [int(i) for i in numpy.shape(Sino3D)]
+recon_size = 950
+Z_slices = 3;
+det_row_count = Z_slices;
+
+#proj_geom = astra_create_proj_geom('parallel3d', 1, 1,
+# det_row_count, size_det, angles_rad);
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+proj_geom = astra.create_proj_geom('parallel3d',
+                                            detectorSpacingX,
+                                            detectorSpacingY,
+                                            det_row_count,
+                                            size_det,
+                                            angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+vol_geom = astra.create_vol_geom(recon_size,recon_size,Z_slices);
+
+sino = numpy.zeros((size_det, angSize, slices_tot), dtype="float")
+
+#weights = ones(size(sino));
+weights = numpy.ones(numpy.shape(sino))
+
+#####################################################################
+## PowerMethod for Lipschitz constant
+
+N = vol_geom['GridColCount']
+x1 = numpy.random.rand(1,N,N)
+#sqweight = sqrt(weights(:,:,1));
+sqweight = numpy.sqrt(weights.T[0]).T
+##proj_geomT = proj_geom;
+proj_geomT = proj_geom.copy()
+##proj_geomT.DetectorRowCount = 1;
+proj_geomT['DetectorRowCount'] = 1
+##vol_geomT = vol_geom;
+vol_geomT = vol_geom.copy()
+##vol_geomT.GridSliceCount = 1;
+vol_geomT['GridSliceCount'] = 1
+
+##[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
+
+#sino_id, y = astra.create_sino3d_gpu(x1, proj_geomT, vol_geomT);
+sino_id, y = astra.create_sino(x1, proj_geomT, vol_geomT);
+
+##y = sqweight.*y;
+##astra_mex_data3d('delete', sino_id);
+        
+
diff --git a/Wrappers/Python/test/create_phantom_projections.py b/Wrappers/Python/test/create_phantom_projections.py
new file mode 100644
index 0000000..20a9278
--- /dev/null
+++ b/Wrappers/Python/test/create_phantom_projections.py
@@ -0,0 +1,49 @@
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+import h5py
+import numpy
+import matplotlib.pyplot as plt
+
+nx = h5py.File('phant3D_256.h5', "r")
+phantom = numpy.asarray(nx.get('/dataset1'))
+pX,pY,pZ = numpy.shape(phantom)
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nxa = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nxa['/'].keys()]
+print (entries)
+
+angles_rad = numpy.asarray(nxa.get('/angles_rad'), dtype="float32")
+
+
+device = AstraDevice(
+    DeviceModel.DeviceType.PARALLEL3D.value,
+    [ pX , pY , 1., 1., angles_rad],
+    [ pX, pY, pZ ] )
+
+
+proj = device.doForwardProject(phantom)
+stack = [proj[:,i,:] for i in range(len(angles_rad))]
+stack = numpy.asarray(stack)
+
+
+fig = plt.figure()
+a=fig.add_subplot(1,2,1)
+a.set_title('proj')
+imgplot = plt.imshow(proj[:,100,:])
+a=fig.add_subplot(1,2,2)
+a.set_title('stack')
+imgplot = plt.imshow(stack[100])
+plt.show()
+
+pf = h5py.File("phantom3D256_projections.h5" , "w")
+pf.create_dataset("/projections", data=stack)
+pf.create_dataset("/sinogram", data=proj)
+pf.create_dataset("/angles", data=angles_rad)
+pf.create_dataset("/reconstruction_volume" , data=numpy.asarray([pX, pY, pZ]))
+pf.create_dataset("/camera/size" , data=numpy.asarray([pX , pY ]))
+pf.create_dataset("/camera/spacing" , data=numpy.asarray([1.,1.]))
+pf.flush()
+pf.close()
diff --git a/Wrappers/Python/test/readhd5.py b/Wrappers/Python/test/readhd5.py
new file mode 100644
index 0000000..eff6c43
--- /dev/null
+++ b/Wrappers/Python/test/readhd5.py
@@ -0,0 +1,42 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+"""
+
+import h5py
+import numpy
+
+def getEntry(nx, location):
+    for item in nx[location].keys():
+        print (item)
+        
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+Sino3D = numpy.asarray(nx.get('/Sino3D'))
+Weights3D = numpy.asarray(nx.get('/Weights3D'))
+angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles_rad'))
+recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
+size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
+
+slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+
+#from ccpi.viewer.CILViewer2D import CILViewer2D
+#v = CILViewer2D()
+#v.setInputAsNumpy(Weights3D)
+#v.startRenderLoop()
+
+import matplotlib.pyplot as plt
+fig = plt.figure()
+
+a=fig.add_subplot(1,1,1)
+a.set_title('noise')
+imgplot = plt.imshow(Weights3D[0].T)
+plt.show()
diff --git a/Wrappers/Python/test/simple_astra_test.py b/Wrappers/Python/test/simple_astra_test.py
new file mode 100644
index 0000000..905eeea
--- /dev/null
+++ b/Wrappers/Python/test/simple_astra_test.py
@@ -0,0 +1,25 @@
+import astra
+import numpy
+
+detectorSpacingX = 1.0
+detectorSpacingY = 1.0
+det_row_count = 128
+det_col_count = 128
+
+angles_rad = numpy.asarray([i for i in range(360)], dtype=float) / 180. * numpy.pi
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+                                            detectorSpacingX,
+                                            detectorSpacingY,
+                                            det_row_count,
+                                            det_col_count,
+                                            angles_rad)
+
+image_size_x = 64
+image_size_y = 64
+image_size_z = 32
+
+vol_geom = astra.creators.create_vol_geom(image_size_x,image_size_y,image_size_z)
+
+x1 = numpy.random.rand(image_size_z,image_size_y,image_size_x)
+sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom)
diff --git a/Wrappers/Python/test/test_reconstructor-os_phantom.py b/Wrappers/Python/test/test_reconstructor-os_phantom.py
new file mode 100644
index 0000000..01f1354
--- /dev/null
+++ b/Wrappers/Python/test/test_reconstructor-os_phantom.py
@@ -0,0 +1,480 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+Based on DemoRD2.m
+"""
+
+import h5py
+import numpy
+
+from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
+import astra
+import matplotlib.pyplot as plt
+from ccpi.imaging.Regularizer import Regularizer
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+
+#from ccpi.viewer.CILViewer2D import *
+
+
+def RMSE(signal1, signal2):
+    '''RMSE Root Mean Squared Error'''
+    if numpy.shape(signal1) == numpy.shape(signal2):
+        err = (signal1 - signal2)
+        err = numpy.sum( err * err )/numpy.size(signal1);  # MSE
+        err = sqrt(err);                                   # RMSE
+        return err
+    else:
+        raise Exception('Input signals must have the same shape')
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/src/Python/test/phantom3D256_projections.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+projections = numpy.asarray(nx.get('/projections'), dtype="float32")
+#Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
+#angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles'), dtype="float32")
+angSize = numpy.size(angles_rad)
+image_size_x, image_size_y, image_size_z = \
+              numpy.asarray(nx.get('/reconstruction_volume'), dtype=int)
+det_col_count, det_row_count = \
+              numpy.asarray(nx.get('/camera/size'))
+#slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+detectorSpacingX, detectorSpacingY = numpy.asarray(nx.get('/camera/spacing'), dtype=int)
+
+Z_slices = 20
+#det_row_count = image_size_y
+# next definition is just for consistency of naming
+#det_col_count = image_size_x
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+                                            detectorSpacingX,
+                                            detectorSpacingY,
+                                            det_row_count,
+                                            det_col_count,
+                                            angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+##image_size_x = recon_size
+##image_size_y = recon_size
+##image_size_z = Z_slices
+vol_geom = astra.creators.create_vol_geom( image_size_x,
+                                           image_size_y,
+                                           image_size_z)
+
+## First pass the arguments to the FISTAReconstructor and test the
+## Lipschitz constant
+astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+                [proj_geom['DetectorRowCount'] ,
+                 proj_geom['DetectorColCount'] ,
+                 proj_geom['DetectorSpacingX'] ,
+                 proj_geom['DetectorSpacingY'] ,
+                 proj_geom['ProjectionAngles']
+                 ],
+                [
+                    vol_geom['GridColCount'],
+                    vol_geom['GridRowCount'], 
+                    vol_geom['GridSliceCount'] ] )
+## create the sinogram 
+Sino3D = numpy.transpose(projections, axes=[1,0,2])
+
+fistaRecon = FISTAReconstructor(proj_geom,
+                                vol_geom,
+                                Sino3D ,
+                                #weights=Weights3D,
+                                device=astradevice)
+
+print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+fistaRecon.setParameter(number_of_iterations = 4)
+#fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+fistaRecon.setParameter(ring_alpha = 21)
+fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+#fistaRecon.setParameter(ring_lambda_R_L1 = 0)
+subsets = 8
+fistaRecon.setParameter(subsets=subsets)
+
+
+#reg = Regularizer(Regularizer.Algorithm.FGP_TV)
+#reg.setParameter(regularization_parameter=0.005,
+#                          number_of_iterations=50)
+reg = Regularizer(Regularizer.Algorithm.FGP_TV)
+reg.setParameter(regularization_parameter=5e6,
+                          tolerance_constant=0.0001,
+                          number_of_iterations=50)
+
+#fistaRecon.setParameter(regularizer=reg)
+#lc = fistaRecon.getParameter('Lipschitz_constant')
+#reg.setParameter(regularization_parameter=5e6/lc)
+
+## Ordered subset
+if True:
+    #subsets = 8
+    fistaRecon.setParameter(subsets=subsets)
+    fistaRecon.createOrderedSubsets()
+else:
+    angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+    #binEdges = numpy.linspace(angles.min(),
+    #                          angles.max(),
+    #                          subsets + 1)
+    binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
+    # get rearranged subset indices
+    IndicesReorg = numpy.zeros((numpy.shape(angles)))
+    counterM = 0
+    for ii in range(binsDiscr.max()):
+        counter = 0
+        for jj in range(subsets):
+            curr_index = ii + jj  + counter
+            #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
+            if binsDiscr[jj] > ii:
+                if (counterM < numpy.size(IndicesReorg)):
+                    IndicesReorg[counterM] = curr_index
+                counterM = counterM + 1
+                
+            counter = counter + binsDiscr[jj] - 1
+
+
+if True:
+    print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+    print ("prepare for iteration")
+    fistaRecon.prepareForIteration()
+    
+    
+
+    print("initializing  ...")
+    if True:
+        # if X doesn't exist
+        #N = params.vol_geom.GridColCount
+        N = vol_geom['GridColCount']
+        print ("N " + str(N))
+        X = numpy.asarray(numpy.ones((image_size_x,image_size_y,image_size_z)),
+                        dtype=numpy.float) * 0.001
+        X = numpy.asarray(numpy.zeros((image_size_x,image_size_y,image_size_z)),
+                        dtype=numpy.float) 
+    else:
+        #X = fistaRecon.initialize()
+        X = numpy.load("X.npy")
+    
+    print (numpy.shape(X))
+    X_t = X.copy()
+    print ("initialized")
+    proj_geom , vol_geom, sino , \
+        SlicesZ, weights , alpha_ring = fistaRecon.getParameter(
+            ['projector_geometry' , 'output_geometry',
+             'input_sinogram', 'SlicesZ' ,  'weights', 'ring_alpha'])
+    lambdaR_L1 , alpha_ring , weights , L_const= \
+                       fistaRecon.getParameter(['ring_lambda_R_L1',
+                                               'ring_alpha' , 'weights',
+                                               'Lipschitz_constant'])
+
+    #fistaRecon.setParameter(number_of_iterations = 3)
+    iterFISTA = fistaRecon.getParameter('number_of_iterations')
+    # errors vector (if the ground truth is given)
+    Resid_error = numpy.zeros((iterFISTA));
+    # objective function values vector
+    objective = numpy.zeros((iterFISTA)); 
+
+      
+    t = 1
+    
+
+    ## additional for 
+    proj_geomSUB = proj_geom.copy()
+    fistaRecon.residual2 = numpy.zeros(numpy.shape(fistaRecon.pars['input_sinogram']))
+    residual2 = fistaRecon.residual2
+    sino_updt_FULL = fistaRecon.residual.copy()
+    r_x = fistaRecon.r.copy()
+
+    results = []
+    print ("starting iterations")
+##    % Outer FISTA iterations loop
+    for i in range(fistaRecon.getParameter('number_of_iterations')):
+##        % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required
+##        % one solution is to work with a full sinogram at times
+##        if ((i >= 3) && (lambdaR_L1 > 0))
+##            [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom);
+##            astra_mex_data3d('delete', sino_id2);
+##        end
+        # With OS approach it becomes trickier to correlate independent subsets,
+        # hence additional work is required one solution is to work with a full
+        # sinogram at times
+
+        
+        #t_old = t
+        SlicesZ, anglesNumb, Detectors = \
+                    numpy.shape(fistaRecon.getParameter('input_sinogram'))
+        ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
+        r_old = fistaRecon.r.copy()
+            
+        if (i > 1 and lambdaR_L1 > 0) :
+            for kkk in range(anglesNumb):
+                 
+                 residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+                                       ((sino_updt_FULL[:,kkk,:]).squeeze() - \
+                                        (sino[:,kkk,:]).squeeze() -\
+                                        (alpha_ring * r_x)
+                                        )
+            #r_old = fistaRecon.r.copy()
+            vec = fistaRecon.residual.sum(axis = 1)
+            #if SlicesZ > 1:
+            #    vec = vec[:,1,:] # 1 or 0?
+            r_x = fistaRecon.r_x
+            # update ring variable
+            fistaRecon.r = (r_x - (1./L_const) * vec)
+
+        # subset loop
+        counterInd = 1
+        geometry_type = fistaRecon.getParameter('projector_geometry')['type']
+        angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+    
+##        if geometry_type == 'parallel' or \
+##           geometry_type == 'fanflat' or \
+##           geometry_type == 'fanflat_vec' :
+##            
+##            for kkk in range(SlicesZ):
+##                sino_id, sinoT[kkk] = \
+##                         astra.creators.create_sino3d_gpu(
+##                             X_t[kkk:kkk+1], proj_geomSUB, vol_geom)
+##                sino_updt_Sub[kkk] = sinoT.T.copy()
+##                
+##        else:
+##            sino_id, sino_updt_Sub = \
+##                astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom)
+##        
+##        astra.matlab.data3d('delete', sino_id)
+  
+        for ss in range(fistaRecon.getParameter('subsets')):
+            print ("Subset {0}".format(ss))
+            X_old = X.copy()
+            t_old = t
+            print ("X[0][0][0] {0} t {1}".format(X[0][0][0], t))
+            
+            # the number of projections per subset
+            numProjSub = fistaRecon.getParameter('os_bins')[ss]
+            CurrSubIndices = fistaRecon.getParameter('os_indices')\
+                             [counterInd:counterInd+numProjSub]
+            shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram')))
+            shape[1] = numProjSub
+            sino_updt_Sub = numpy.zeros(shape)
+            
+            #print ("Len CurrSubIndices {0}".format(numProjSub))
+            mask = numpy.zeros(numpy.shape(angles), dtype=bool)
+            cc = 0
+            for j in range(len(CurrSubIndices)):
+                mask[int(CurrSubIndices[j])] = True
+
+            ## this is a reduced device
+            rdev = fistaRecon.getParameter('device_model')\
+                   .createReducedDevice(proj_par={'angles' : angles[mask]},
+                                        vol_par={})
+            proj_geomSUB['ProjectionAngles'] = angles[mask]
+
+            
+
+            if geometry_type == 'parallel' or \
+               geometry_type == 'fanflat' or \
+               geometry_type == 'fanflat_vec' :
+
+                for kkk in range(SlicesZ):
+                    sino_id, sinoT = astra.creators.create_sino3d_gpu (
+                        X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
+                    sino_updt_Sub[kkk] = sinoT.T.copy()
+                    astra.matlab.data3d('delete', sino_id)
+            else:
+                # for 3D geometry (watch the GPU memory overflow in ASTRA < 1.8)
+                sino_id, sino_updt_Sub = \
+                     astra.creators.create_sino3d_gpu (X_t,
+                                                       proj_geomSUB,
+                                                       vol_geom)
+                
+                astra.matlab.data3d('delete', sino_id)
+                
+            
+
+
+            ## RING REMOVAL
+            residual = fistaRecon.residual
+            
+            
+            if lambdaR_L1 > 0 :
+                 print ("ring removal")
+                 residualSub = numpy.zeros(shape)
+    ##             for a chosen subset
+    ##                for kkk = 1:numProjSub
+    ##                    indC = CurrSubIndeces(kkk);
+    ##                    residualSub(:,kkk,:) =  squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
+    ##                    sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram
+    ##                end
+                 for kkk in range(numProjSub):
+                     #print ("ring removal indC ... {0}".format(kkk))
+                     indC = int(CurrSubIndices[kkk])
+                     residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \
+                            (sino_updt_Sub[:,kkk,:].squeeze() - \
+                             sino[:,indC,:].squeeze() - alpha_ring * r_x)
+                     # filling the full sinogram
+                     sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze()
+
+            else:
+                #PWLS model
+                # I guess we need to use mask here instead
+                residualSub = weights[:,CurrSubIndices,:] * \
+                              ( sino_updt_Sub - \
+                                sino[:,CurrSubIndices,:].squeeze() )
+            # it seems that in the original code the following like is not
+            # calculated in the case of ring removal
+            objective[i] = 0.5 * numpy.linalg.norm(residualSub)
+
+            #backprojection
+            if geometry_type == 'parallel' or \
+               geometry_type == 'fanflat' or \
+               geometry_type == 'fanflat_vec' :
+                # if geometry is 2D use slice-by-slice projection-backprojection
+                # routine
+                x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32)
+                for kkk in range(SlicesZ):
+                    
+                    x_id, x_temp[kkk] = \
+                             astra.creators.create_backprojection3d_gpu(
+                                 residualSub[kkk:kkk+1],
+                                 proj_geomSUB, vol_geom)
+                    astra.matlab.data3d('delete', x_id)
+                    
+            else:
+                x_id, x_temp = \
+                      astra.creators.create_backprojection3d_gpu(
+                          residualSub, proj_geomSUB, vol_geom)
+
+                astra.matlab.data3d('delete', x_id)
+                
+            X = X_t - (1/L_const) * x_temp
+
+        
+
+            ## REGULARIZATION
+            ## SKIPPING FOR NOW
+            ## Should be simpli
+            # regularizer = fistaRecon.getParameter('regularizer')
+            # for slices:
+            # out = regularizer(input=X)
+            print ("regularizer")
+            reg = fistaRecon.getParameter('regularizer')
+
+            if reg is not None:
+                X = reg(input=X,
+                        output_all=False)
+
+            t = (1 + numpy.sqrt(1 + 4 * t **2))/2
+            X_t = X + (((t_old -1)/t) * (X-X_old))
+            counterInd = counterInd + numProjSub - 1
+        if i == 1:
+            r_old = fistaRecon.r.copy()
+            
+        ## FINAL
+        print ("final")
+        lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
+        if lambdaR_L1 > 0:
+            fistaRecon.r = numpy.max(
+                numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
+                numpy.sign(fistaRecon.r)
+            # updating r
+            r_x = fistaRecon.r + ((t_old-1)/t) * (fistaRecon.r - r_old)
+        
+
+        if fistaRecon.getParameter('region_of_interest') is None:
+            string = 'Iteration Number {0} | Objective {1} \n'
+            print (string.format( i, objective[i]))
+        else:
+            ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+                                                    'ideal_image')
+            
+            Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+            string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+            print (string.format(i,Resid_error[i], objective[i]))
+
+        results.append(X[10])
+    numpy.save("X_out_os.npy", X)
+
+else:
+    
+    
+    
+    astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+                [proj_geom['DetectorRowCount'] ,
+                 proj_geom['DetectorColCount'] ,
+                 proj_geom['DetectorSpacingX'] ,
+                 proj_geom['DetectorSpacingY'] ,
+                 proj_geom['ProjectionAngles']
+                 ],
+                [
+                    vol_geom['GridColCount'],
+                    vol_geom['GridRowCount'], 
+                    vol_geom['GridSliceCount'] ] )
+    regul = Regularizer(Regularizer.Algorithm.FGP_TV)
+    regul.setParameter(regularization_parameter=5e6,
+                       number_of_iterations=50,
+                       tolerance_constant=1e-4,
+                       TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
+
+    fistaRecon = FISTAReconstructor(proj_geom,
+                                vol_geom,
+                                Sino3D ,
+                                weights=Weights3D,
+                                device=astradevice,
+                                #regularizer = regul,
+                                subsets=8)
+
+    print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+    fistaRecon.setParameter(number_of_iterations = 1)
+    fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+    fistaRecon.setParameter(ring_alpha = 21)
+    fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+    #fistaRecon.setParameter(subsets=8)
+    
+    #lc = fistaRecon.getParameter('Lipschitz_constant')
+    #fistaRecon.getParameter('regularizer').setParameter(regularization_parameter=5e6/lc)
+    
+    fistaRecon.prepareForIteration()
+    X = fistaRecon.iterate(numpy.load("X.npy"))
+    
+
+# plot
+fig = plt.figure()
+cols = 3
+
+## add the difference
+rd = []
+for i in range(1,len(results)):
+    rd.append(results[i-1])
+    rd.append(results[i])
+    rd.append(results[i] - results[i-1])
+
+rows = (lambda x: int(numpy.floor(x/cols) + 1) if x%cols != 0  else int(x/cols)) \
+       (len (rd))
+for i in range(len (results)):
+    a=fig.add_subplot(rows,cols,i+1)
+    imgplot = plt.imshow(results[i], vmin=0, vmax=1)
+    a.text(0.05, 0.95, "iteration {0}".format(i),
+               verticalalignment='top')
+##    i = i + 1
+##    a=fig.add_subplot(rows,cols,i+1)
+##    imgplot = plt.imshow(results[i], vmin=0, vmax=10)
+##    a.text(0.05, 0.95, "iteration {0}".format(i),
+##               verticalalignment='top')
+    
+##    a=fig.add_subplot(rows,cols,i+2)
+##    imgplot = plt.imshow(results[i]-results[i-1], vmin=0, vmax=10)
+##    a.text(0.05, 0.95, "difference {0}-{1}".format(i, i-1),
+##               verticalalignment='top')
+        
+        
+
+plt.show()
diff --git a/Wrappers/Python/test/test_reconstructor.py b/Wrappers/Python/test/test_reconstructor.py
new file mode 100644
index 0000000..40065e7
--- /dev/null
+++ b/Wrappers/Python/test/test_reconstructor.py
@@ -0,0 +1,359 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+Based on DemoRD2.m
+"""
+
+import h5py
+import numpy
+
+from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
+import astra
+import matplotlib.pyplot as plt
+from ccpi.imaging.Regularizer import Regularizer
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+
+def RMSE(signal1, signal2):
+    '''RMSE Root Mean Squared Error'''
+    if numpy.shape(signal1) == numpy.shape(signal2):
+        err = (signal1 - signal2)
+        err = numpy.sum( err * err )/numpy.size(signal1);  # MSE
+        err = sqrt(err);                                   # RMSE
+        return err
+    else:
+        raise Exception('Input signals must have the same shape')
+
+def createAstraDevice(projector_geometry, output_geometry):
+    '''TODO remove'''
+    
+    device = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+                [projector_geometry['DetectorRowCount'] ,
+                 projector_geometry['DetectorColCount'] ,
+                 projector_geometry['DetectorSpacingX'] ,
+                 projector_geometry['DetectorSpacingY'] ,
+                 projector_geometry['ProjectionAngles']
+                 ],
+                [
+                    output_geometry['GridColCount'],
+                    output_geometry['GridRowCount'], 
+                    output_geometry['GridSliceCount'] ] )
+    return device
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32")
+Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
+angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32")
+recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
+size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
+slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+
+Z_slices = 20
+det_row_count = Z_slices
+# next definition is just for consistency of naming
+det_col_count = size_det
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+                                            detectorSpacingX,
+                                            detectorSpacingY,
+                                            det_row_count,
+                                            det_col_count,
+                                            angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+image_size_x = recon_size
+image_size_y = recon_size
+image_size_z = Z_slices
+vol_geom = astra.creators.create_vol_geom( image_size_x,
+                                           image_size_y,
+                                           image_size_z)
+
+## First pass the arguments to the FISTAReconstructor and test the
+## Lipschitz constant
+
+##fistaRecon = FISTAReconstructor(proj_geom,
+##                                vol_geom,
+##                                Sino3D ,
+##                                weights=Weights3D)
+##
+##print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+##fistaRecon.setParameter(number_of_iterations = 12)
+##fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+##fistaRecon.setParameter(ring_alpha = 21)
+##fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+##
+##reg = Regularizer(Regularizer.Algorithm.LLT_model)
+##reg.setParameter(regularization_parameter=25,
+##                          time_step=0.0003,
+##                          tolerance_constant=0.0001,
+##                          number_of_iterations=300)
+##fistaRecon.setParameter(regularizer=reg)
+
+## Ordered subset
+if False:
+    subsets = 16
+    angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+    #binEdges = numpy.linspace(angles.min(),
+    #                          angles.max(),
+    #                          subsets + 1)
+    binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
+    # get rearranged subset indices
+    IndicesReorg = numpy.zeros((numpy.shape(angles)))
+    counterM = 0
+    for ii in range(binsDiscr.max()):
+        counter = 0
+        for jj in range(subsets):
+            curr_index = ii + jj  + counter
+            #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
+            if binsDiscr[jj] > ii:
+                if (counterM < numpy.size(IndicesReorg)):
+                    IndicesReorg[counterM] = curr_index
+                counterM = counterM + 1
+                
+            counter = counter + binsDiscr[jj] - 1
+
+
+if False:
+    print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+    print ("prepare for iteration")
+    fistaRecon.prepareForIteration()
+    
+    
+
+    print("initializing  ...")
+    if False:
+        # if X doesn't exist
+        #N = params.vol_geom.GridColCount
+        N = vol_geom['GridColCount']
+        print ("N " + str(N))
+        X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
+    else:
+        #X = fistaRecon.initialize()
+        X = numpy.load("X.npy")
+    
+    print (numpy.shape(X))
+    X_t = X.copy()
+    print ("initialized")
+    proj_geom , vol_geom, sino , \
+                      SlicesZ = fistaRecon.getParameter(['projector_geometry' ,
+                                                            'output_geometry',
+                                                            'input_sinogram',
+                                                         'SlicesZ'])
+
+    #fistaRecon.setParameter(number_of_iterations = 3)
+    iterFISTA = fistaRecon.getParameter('number_of_iterations')
+    # errors vector (if the ground truth is given)
+    Resid_error = numpy.zeros((iterFISTA));
+    # objective function values vector
+    objective = numpy.zeros((iterFISTA)); 
+
+      
+    t = 1
+
+
+    print ("starting iterations")
+##    % Outer FISTA iterations loop
+    for i in range(fistaRecon.getParameter('number_of_iterations')):
+        X_old = X.copy()
+        t_old = t
+        r_old = fistaRecon.r.copy()
+        if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
+           fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \
+           fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' :
+            # if the geometry is parallel use slice-by-slice
+            # projection-backprojection routine
+            #sino_updt = zeros(size(sino),'single');
+            proj_geomT = proj_geom.copy()
+            proj_geomT['DetectorRowCount'] = 1
+            vol_geomT = vol_geom.copy()
+            vol_geomT['GridSliceCount'] = 1;
+            sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
+            for kkk in range(SlicesZ):
+                sino_id, sino_updt[kkk] = \
+                         astra.creators.create_sino3d_gpu(
+                             X_t[kkk:kkk+1], proj_geom, vol_geom)
+                astra.matlab.data3d('delete', sino_id)
+        else:
+            # for divergent 3D geometry (watch the GPU memory overflow in
+            # ASTRA versions < 1.8)
+            #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+            sino_id, sino_updt = astra.creators.create_sino3d_gpu(
+                X_t, proj_geom, vol_geom)
+
+        ## RING REMOVAL
+        residual = fistaRecon.residual
+        lambdaR_L1 , alpha_ring , weights , L_const= \
+                   fistaRecon.getParameter(['ring_lambda_R_L1',
+                                           'ring_alpha' , 'weights',
+                                           'Lipschitz_constant'])
+        r_x = fistaRecon.r_x
+        SlicesZ, anglesNumb, Detectors = \
+                    numpy.shape(fistaRecon.getParameter('input_sinogram'))
+        if lambdaR_L1 > 0 :
+             print ("ring removal")
+             for kkk in range(anglesNumb):
+                 
+                 residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+                                       ((sino_updt[:,kkk,:]).squeeze() - \
+                                        (sino[:,kkk,:]).squeeze() -\
+                                        (alpha_ring * r_x)
+                                        )
+             vec = residual.sum(axis = 1)
+             #if SlicesZ > 1:
+             #    vec = vec[:,1,:].squeeze()
+             fistaRecon.r = (r_x - (1./L_const) * vec).copy()
+             objective[i] = (0.5 * (residual ** 2).sum())
+##            % the ring removal part (Group-Huber fidelity)
+##            for kkk = 1:anglesNumb
+##                residual(:,kkk,:) =  squeeze(weights(:,kkk,:)).*
+##                 (squeeze(sino_updt(:,kkk,:)) -
+##                 (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
+##            end
+##            vec = sum(residual,2);
+##            if (SlicesZ > 1)
+##                vec = squeeze(vec(:,1,:));
+##            end
+##            r = r_x - (1./L_const).*vec;
+##            objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
+
+        
+
+        # Projection/Backprojection Routine
+        if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
+           fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\
+           fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec':
+            x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
+            print ("Projection/Backprojection Routine")
+            for kkk in range(SlicesZ):
+                
+                x_id, x_temp[kkk] = \
+                         astra.creators.create_backprojection3d_gpu(
+                             residual[kkk:kkk+1],
+                             proj_geomT, vol_geomT)
+                astra.matlab.data3d('delete', x_id)
+        else:
+            x_id, x_temp = \
+                  astra.creators.create_backprojection3d_gpu(
+                      residual, proj_geom, vol_geom)            
+
+        X = X_t - (1/L_const) * x_temp
+        astra.matlab.data3d('delete', sino_id)
+        astra.matlab.data3d('delete', x_id)
+        
+
+        ## REGULARIZATION
+        ## SKIPPING FOR NOW
+        ## Should be simpli
+        # regularizer = fistaRecon.getParameter('regularizer')
+        # for slices:
+        # out = regularizer(input=X)
+        print ("skipping regularizer")
+
+
+        ## FINAL
+        print ("final")
+        lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
+        if lambdaR_L1 > 0:
+            fistaRecon.r = numpy.max(
+                numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
+                numpy.sign(fistaRecon.r)
+        t = (1 + numpy.sqrt(1 + 4 * t**2))/2
+        X_t = X + (((t_old -1)/t) * (X - X_old))
+
+        if lambdaR_L1 > 0:
+            fistaRecon.r_x = fistaRecon.r + \
+                             (((t_old-1)/t) * (fistaRecon.r - r_old))
+
+        if fistaRecon.getParameter('region_of_interest') is None:
+            string = 'Iteration Number {0} | Objective {1} \n'
+            print (string.format( i, objective[i]))
+        else:
+            ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+                                                    'ideal_image')
+            
+            Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+            string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+            print (string.format(i,Resid_error[i], objective[i]))
+            
+##        if (lambdaR_L1 > 0)
+##            r =  max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
+##        end
+##        
+##        t = (1 + sqrt(1 + 4*t^2))/2; % updating t
+##        X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
+##        
+##        if (lambdaR_L1 > 0)
+##            r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
+##        end
+##        
+##        if (show == 1)
+##            figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
+##            if (lambdaR_L1 > 0)
+##                figure(11); plot(r); title('Rings offset vector')
+##            end
+##            pause(0.01);
+##        end
+##        if (strcmp(X_ideal, 'none' ) == 0)
+##            Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
+##            fprintf('%s %i %s %s %.4f  %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
+##        else
+##            fprintf('%s %i  %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
+##        end
+else:
+    
+    # create a device for forward/backprojection
+    #astradevice = createAstraDevice(proj_geom, vol_geom)
+    
+    astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+                [proj_geom['DetectorRowCount'] ,
+                 proj_geom['DetectorColCount'] ,
+                 proj_geom['DetectorSpacingX'] ,
+                 proj_geom['DetectorSpacingY'] ,
+                 proj_geom['ProjectionAngles']
+                 ],
+                [
+                    vol_geom['GridColCount'],
+                    vol_geom['GridRowCount'], 
+                    vol_geom['GridSliceCount'] ] )
+
+    regul = Regularizer(Regularizer.Algorithm.FGP_TV)
+    regul.setParameter(regularization_parameter=5e6,
+                       number_of_iterations=50,
+                       tolerance_constant=1e-4,
+                       TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
+    
+    fistaRecon = FISTAReconstructor(proj_geom,
+                                vol_geom,
+                                Sino3D ,
+                                device = astradevice,
+                                weights=Weights3D,
+                                regularizer = regul
+                                )
+
+    print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+    fistaRecon.setParameter(number_of_iterations = 18)
+    fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+    fistaRecon.setParameter(ring_alpha = 21)
+    fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+
+    
+    
+    fistaRecon.prepareForIteration()
+    X = numpy.load("X.npy")
+
+    
+    X = fistaRecon.iterate(X)
+    #numpy.save("X_out.npy", X)
diff --git a/Wrappers/Python/test/test_regularizers.py b/Wrappers/Python/test/test_regularizers.py
new file mode 100644
index 0000000..27e4ed3
--- /dev/null
+++ b/Wrappers/Python/test/test_regularizers.py
@@ -0,0 +1,412 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Aug  4 11:10:05 2017
+
+@author: ofn77899
+"""
+
+#from ccpi.viewer.CILViewer2D import Converter
+#import vtk
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os    
+from enum import Enum
+import timeit
+#from PIL import Image
+#from Regularizer import Regularizer
+from ccpi.imaging.Regularizer import Regularizer
+
+###############################################################################
+#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
+#NRMSE a normalization of the root of the mean squared error
+#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
+# intensity from the two images being compared, and respectively the same for
+# minval. RMSE is given by the square root of MSE: 
+# sqrt[(sum(A - B) ** 2) / |A|],
+# where |A| means the number of elements in A. By doing this, the maximum value
+# given by RMSE is maxval.
+
+def nrmse(im1, im2):
+    a, b = im1.shape
+    rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+    max_val = max(np.max(im1), np.max(im2))
+    min_val = min(np.min(im1), np.min(im2))
+    return 1 - (rmse / (max_val - min_val))
+###############################################################################
+
+###############################################################################
+#
+#  2D Regularizers
+#
+###############################################################################
+#Example:
+# figure;
+# Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
+filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
+#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
+
+#reader = vtk.vtkTIFFReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+Im = plt.imread(filename)                     
+#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255
+#img.show()
+Im = np.asarray(Im, dtype='float32')
+
+
+
+
+#imgplot = plt.imshow(Im)
+perc = 0.05
+u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+## plot 
+fig = plt.figure()
+#a=fig.add_subplot(3,3,1)
+#a.set_title('Original')
+#imgplot = plt.imshow(Im)
+
+a=fig.add_subplot(2,3,1)
+a.set_title('noise')
+imgplot = plt.imshow(u0,cmap="gray")
+
+reg_output = []
+##############################################################################
+# Call regularizer
+
+####################### SplitBregman_TV #####################################
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+use_object = True
+if use_object:
+    reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+    print (reg.pars)
+    reg.setParameter(input=u0)    
+    reg.setParameter(regularization_parameter=10.)
+    # or 
+    # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30,
+              #tolerance_constant=1e-4, 
+              #TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+    plotme = reg() [0]
+    pars = reg.pars
+    textstr = reg.printParametersToString() 
+    
+    #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+              #tolerance_constant=1e-4, 
+    #          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+    
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+#          tolerance_constant=1e-4, 
+#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+
+else:
+    out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. )
+    pars = out2[2]
+    reg_output.append(out2)
+    plotme = reg_output[-1][0]
+    textstr = out2[-1]
+
+a=fig.add_subplot(2,3,2)
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+imgplot = plt.imshow(plotme,cmap="gray")
+
+###################### FGP_TV #########################################
+# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005,
+                          number_of_iterations=50)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,3)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0])
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+###################### LLT_model #########################################
+# * u0 = Im + .03*randn(size(Im)); % adding noise
+# [Den] = LLT_model(single(u0), 10, 0.1, 1);
+#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
+#input, regularization_parameter , time_step, number_of_iterations,
+#                  tolerance_constant, restrictive_Z_smoothing=0
+out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+                          time_step=0.0003,
+                          tolerance_constant=0.0001,
+                          number_of_iterations=300)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,4)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+
+# ###################### PatchBased_Regul #########################################
+# # Quick 2D denoising example in Matlab:   
+# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# #   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
+
+out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+                       searching_window_ratio=3,
+                       similarity_window_ratio=1,
+                       PB_filtering_parameter=0.08)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,5)
+
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+
+# ###################### TGV_PD #########################################
+# # Quick 2D denoising example in Matlab:   
+# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# #   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+                           first_order_term=1.3,
+                           second_order_term=1,
+                           number_of_iterations=550)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,6)
+
+
+textstr = out2[-1]
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+
+plt.show()
+
+################################################################################
+##
+##  3D Regularizers
+##
+################################################################################
+##Example:
+## figure;
+## Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
+#
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+##vtk returns 3D images, let's take just the one slice there is as 2D
+#Im = Converter.vtk2numpy(reader.GetOutput())
+#Im = Im.astype('float32')
+##imgplot = plt.imshow(Im)
+#perc = 0.05
+#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+## map the u0 u0->u0>0
+#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+#u0 = f(u0).astype('float32')
+#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
+#                                        reader.GetOutput().GetOrigin())
+#converter.Update()
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetInputData(converter.GetOutput())
+#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
+##writer.Write()
+#
+#
+### plot 
+#fig3D = plt.figure()
+##a=fig.add_subplot(3,3,1)
+##a.set_title('Original')
+##imgplot = plt.imshow(Im)
+#sliceNo = 32
+#
+#a=fig3D.add_subplot(2,3,1)
+#a.set_title('noise')
+#imgplot = plt.imshow(u0.T[sliceNo])
+#
+#reg_output3d = []
+#
+###############################################################################
+## Call regularizer
+#
+######################## SplitBregman_TV #####################################
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+#
+##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+##          #tolerance_constant=1e-4, 
+##          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+#          tolerance_constant=1e-4, 
+#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### FGP_TV #########################################
+## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
+#                          number_of_iterations=200)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### LLT_model #########################################
+## * u0 = Im + .03*randn(size(Im)); % adding noise
+## [Den] = LLT_model(single(u0), 10, 0.1, 1);
+##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
+##input, regularization_parameter , time_step, number_of_iterations,
+##                  tolerance_constant, restrictive_Z_smoothing=0
+#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+#                          time_step=0.0003,
+#                          tolerance_constant=0.0001,
+#                          number_of_iterations=300)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### PatchBased_Regul #########################################
+## Quick 2D denoising example in Matlab:   
+##   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+##   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+##   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
+#
+#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+#                          searching_window_ratio=3,
+#                          similarity_window_ratio=1,
+#                          PB_filtering_parameter=0.08)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+
+###################### TGV_PD #########################################
+# Quick 2D denoising example in Matlab:   
+#   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+#   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+#   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+#                          first_order_term=1.3,
+#                          second_order_term=1,
+#                          number_of_iterations=550)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/test_regularizers_3d.py b/Wrappers/Python/test/test_regularizers_3d.py
new file mode 100644
index 0000000..2d11a7e
--- /dev/null
+++ b/Wrappers/Python/test/test_regularizers_3d.py
@@ -0,0 +1,425 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Aug  4 11:10:05 2017
+
+@author: ofn77899
+"""
+
+#from ccpi.viewer.CILViewer2D import Converter
+#import vtk
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os    
+from enum import Enum
+import timeit
+#from PIL import Image
+#from Regularizer import Regularizer
+from ccpi.imaging.Regularizer import Regularizer
+
+###############################################################################
+#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
+#NRMSE a normalization of the root of the mean squared error
+#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
+# intensity from the two images being compared, and respectively the same for
+# minval. RMSE is given by the square root of MSE: 
+# sqrt[(sum(A - B) ** 2) / |A|],
+# where |A| means the number of elements in A. By doing this, the maximum value
+# given by RMSE is maxval.
+
+def nrmse(im1, im2):
+    a, b = im1.shape
+    rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+    max_val = max(np.max(im1), np.max(im2))
+    min_val = min(np.min(im1), np.min(im2))
+    return 1 - (rmse / (max_val - min_val))
+###############################################################################
+
+###############################################################################
+#
+#  2D Regularizers
+#
+###############################################################################
+#Example:
+# figure;
+# Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
+filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
+#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
+
+#reader = vtk.vtkTIFFReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+Im = plt.imread(filename)                     
+#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255
+#img.show()
+Im = np.asarray(Im, dtype='float32')
+
+# create a 3D image by stacking N of this images
+
+
+#imgplot = plt.imshow(Im)
+perc = 0.05
+u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
+y,z = np.shape(u_n)
+u_n = np.reshape(u_n , (1,y,z))
+
+u0 = u_n.copy()
+for i in range (19):
+    u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
+    u_n = np.reshape(u_n , (1,y,z))
+
+    u0 = np.vstack ( (u0, u_n) )
+
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+print ("Passed image shape {0}".format(np.shape(u0)))
+
+## plot 
+fig = plt.figure()
+#a=fig.add_subplot(3,3,1)
+#a.set_title('Original')
+#imgplot = plt.imshow(Im)
+sliceno = 10
+
+a=fig.add_subplot(2,3,1)
+a.set_title('noise')
+imgplot = plt.imshow(u0[sliceno],cmap="gray")
+
+reg_output = []
+##############################################################################
+# Call regularizer
+
+####################### SplitBregman_TV #####################################
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+use_object = True
+if use_object:
+    reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+    print (reg.pars)
+    reg.setParameter(input=u0)    
+    reg.setParameter(regularization_parameter=10.)
+    # or 
+    # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30,
+              #tolerance_constant=1e-4, 
+              #TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+    plotme = reg() [0]
+    pars = reg.pars
+    textstr = reg.printParametersToString() 
+    
+    #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+              #tolerance_constant=1e-4, 
+    #          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+    
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+#          tolerance_constant=1e-4, 
+#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+
+else:
+    out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. )
+    pars = out2[2]
+    reg_output.append(out2)
+    plotme = reg_output[-1][0]
+    textstr = out2[-1]
+
+a=fig.add_subplot(2,3,2)
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+imgplot = plt.imshow(plotme[sliceno],cmap="gray")
+
+###################### FGP_TV #########################################
+# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005,
+                          number_of_iterations=50)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,3)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno])
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+###################### LLT_model #########################################
+# * u0 = Im + .03*randn(size(Im)); % adding noise
+# [Den] = LLT_model(single(u0), 10, 0.1, 1);
+#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
+#input, regularization_parameter , time_step, number_of_iterations,
+#                  tolerance_constant, restrictive_Z_smoothing=0
+out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+                          time_step=0.0003,
+                          tolerance_constant=0.0001,
+                          number_of_iterations=300)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,4)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+# ###################### PatchBased_Regul #########################################
+# # Quick 2D denoising example in Matlab:   
+# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# #   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
+
+out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+                       searching_window_ratio=3,
+                       similarity_window_ratio=1,
+                       PB_filtering_parameter=0.08)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,5)
+
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+# ###################### TGV_PD #########################################
+# # Quick 2D denoising example in Matlab:   
+# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# #   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+                           first_order_term=1.3,
+                           second_order_term=1,
+                           number_of_iterations=550)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,6)
+
+
+textstr = out2[-1]
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+plt.show()
+
+################################################################################
+##
+##  3D Regularizers
+##
+################################################################################
+##Example:
+## figure;
+## Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
+#
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+##vtk returns 3D images, let's take just the one slice there is as 2D
+#Im = Converter.vtk2numpy(reader.GetOutput())
+#Im = Im.astype('float32')
+##imgplot = plt.imshow(Im)
+#perc = 0.05
+#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+## map the u0 u0->u0>0
+#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+#u0 = f(u0).astype('float32')
+#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
+#                                        reader.GetOutput().GetOrigin())
+#converter.Update()
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetInputData(converter.GetOutput())
+#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
+##writer.Write()
+#
+#
+### plot 
+#fig3D = plt.figure()
+##a=fig.add_subplot(3,3,1)
+##a.set_title('Original')
+##imgplot = plt.imshow(Im)
+#sliceNo = 32
+#
+#a=fig3D.add_subplot(2,3,1)
+#a.set_title('noise')
+#imgplot = plt.imshow(u0.T[sliceNo])
+#
+#reg_output3d = []
+#
+###############################################################################
+## Call regularizer
+#
+######################## SplitBregman_TV #####################################
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+#
+##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+##          #tolerance_constant=1e-4, 
+##          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+#          tolerance_constant=1e-4, 
+#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### FGP_TV #########################################
+## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
+#                          number_of_iterations=200)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### LLT_model #########################################
+## * u0 = Im + .03*randn(size(Im)); % adding noise
+## [Den] = LLT_model(single(u0), 10, 0.1, 1);
+##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
+##input, regularization_parameter , time_step, number_of_iterations,
+##                  tolerance_constant, restrictive_Z_smoothing=0
+#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+#                          time_step=0.0003,
+#                          tolerance_constant=0.0001,
+#                          number_of_iterations=300)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### PatchBased_Regul #########################################
+## Quick 2D denoising example in Matlab:   
+##   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+##   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+##   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
+#
+#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+#                          searching_window_ratio=3,
+#                          similarity_window_ratio=1,
+#                          PB_filtering_parameter=0.08)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+
+###################### TGV_PD #########################################
+# Quick 2D denoising example in Matlab:   
+#   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+#   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+#   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+#                          first_order_term=1.3,
+#                          second_order_term=1,
+#                          number_of_iterations=550)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/view_result.py b/Wrappers/Python/test/view_result.py
new file mode 100644
index 0000000..f89a90c
--- /dev/null
+++ b/Wrappers/Python/test/view_result.py
@@ -0,0 +1,12 @@
+import numpy
+from ccpi.viewer.CILViewer2D import *
+import sys
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName("X_out_os_s.mhd")
+#reader.Update()
+
+X = numpy.load(sys.argv[1])
+
+v = CILViewer2D()
+v.setInputAsNumpy(X)
+v.startRenderLoop()
-- 
cgit v1.2.3


From 369e6c320889b84ce60a83c54b70e203300a4e1d Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Wed, 10 Jan 2018 15:07:10 +0000
Subject: changes with cmake steering conda

---
 Wrappers/Python/CMakeLists.txt | 17 +++++++++++++++--
 1 file changed, 15 insertions(+), 2 deletions(-)

diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt
index 506159a..e9f190c 100644
--- a/Wrappers/Python/CMakeLists.txt
+++ b/Wrappers/Python/CMakeLists.txt
@@ -13,6 +13,20 @@
 #   limitations under the License.
 
 # variables that must be set for conda compilation
+cmake_minimum_required (VERSION 3.0)
+
+project(FISTA)
+#https://stackoverflow.com/questions/13298504/using-cmake-with-setup-py
+
+# The version number.
+set (FISTA_VERSION_MAJOR 1)
+set (FISTA_VERSION_MINOR 0)
+
+set (CIL_VERSION_MAJOR 0)
+set (CIL_VERSION_MINOR 9)
+set (CIL_VERSION_PATCH 1)
+
+set (CIL_VERSION '${CIL_VERSION_MAJOR}.${CIL_VERSION_MINOR}.${CIL_VERSION_PATCH}' CACHE INTERNAL "Core Imaging Library version" FORCE)
 
 #PREFIX=C:\Apps\Miniconda2\envs\cil\Library
 #LIBRARY_INC=C:\\Apps\\Miniconda2\\envs\\cil\\Library\\include
@@ -51,8 +65,7 @@ endif()
 
 message("CIL VERSION " ${CIL_VERSION})
 
-# set the Python variables for the Conda environment
-include(FindAnacondaEnvironment.cmake)
+
 findPythonForAnacondaEnvironment(${CONDA_ENVIRONMENT_PATH})
 
 message("Python found " ${PYTHON_VERSION_STRING})
-- 
cgit v1.2.3


From ffe5f08c6f161485ab59496e54a8a44bc8986361 Mon Sep 17 00:00:00 2001
From: Edoardo Pasca <edo.paskino@gmail.com>
Date: Fri, 19 Jan 2018 14:27:45 +0000
Subject: change in the meta.yaml

---
 Core/recipe/meta.yaml | 24 +++++++++++++++++++-----
 1 file changed, 19 insertions(+), 5 deletions(-)

diff --git a/Core/recipe/meta.yaml b/Core/recipe/meta.yaml
index 1fca6bf..fbce22b 100644
--- a/Core/recipe/meta.yaml
+++ b/Core/recipe/meta.yaml
@@ -1,5 +1,5 @@
 package:
-  name: regularizer
+  name: cil_regularizer
   version: {{ environ['CIL_VERSION'] }}
 
 source:
@@ -10,11 +10,25 @@ build:
   script_env: 
     - CIL_VERSION
 
-requirements: 
+requirements:
   build:
-    - toolchain
-    - cmake
-    - ninja
+    - boost == 1.64.0	
+    - boost-cpp == 1.64.0 
+#    - toolchain
+    - python 3.5        
+    - cmake >=3.1
+#    - zlib 1.2.11
+    - vc 14 # [win and py35] 
+    - libtiff    
+    - numpy
+
+  run:
+    - boost ==1.64.0
+    - libtiff
+    - vc 14 # [win and py35]
+    - python 3.5
+    - numpy
+
 
 about:
   home: http://www.ccpi.ac.uk
-- 
cgit v1.2.3