From 0587f96cafac66d9ee04005a80b43514c6d2a753 Mon Sep 17 00:00:00 2001 From: dkazanc Date: Mon, 25 Feb 2019 17:13:28 +0000 Subject: some TGV updates and demos --- .../demos/SoftwareX_supp/Demo_RealData_Recon_SX.py | 148 ++++++++++++++++++--- .../SoftwareX_supp/Demo_SimulData_Recon_SX.py | 29 ---- 2 files changed, 127 insertions(+), 50 deletions(-) (limited to 'Wrappers/Python') diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py index 8a11f04..4cd680e 100644 --- a/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py @@ -22,7 +22,8 @@ import numpy as np import matplotlib.pyplot as plt import h5py from tomorec.supp.suppTools import normaliser - +import time +from libtiff import TIFF # load dendritic projection data h5f = h5py.File('data/DendrData_3D.h5','r') @@ -36,7 +37,7 @@ h5f.close() data_norm = normaliser(dataRaw, flats, darks, log='log') del dataRaw, darks, flats -intens_max = 2 +intens_max = 2.3 plt.figure() plt.subplot(131) plt.imshow(data_norm[:,150,:],vmin=0, vmax=intens_max) @@ -49,29 +50,38 @@ plt.imshow(data_norm[:,:,600],vmin=0, vmax=intens_max) plt.title('Tangentogram view') plt.show() - detectorHoriz = np.size(data_norm,2) det_y_crop = [i for i in range(0,detectorHoriz-22)] N_size = 950 # reconstruction domain +time_label = int(time.time()) #%% +""" print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("%%%%%%%%%%%%Reconstructing with FBP method %%%%%%%%%%%%%%%%%") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") from tomorec.methodsDIR import RecToolsDIR RectoolsDIR = RecToolsDIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) - DetectorsDimV = 10, # DetectorsDimV # detector dimension (vertical) for 3D case only + DetectorsDimV = 200, # DetectorsDimV # detector dimension (vertical) for 3D case only AnglesVec = angles_rad, # array of angles in radians ObjSize = N_size, # a scalar to define reconstructed object dimensions device='gpu') -FBPrec = RectoolsDIR.FBP(data_norm[0:10,:,det_y_crop]) +FBPrec = RectoolsDIR.FBP(data_norm[20:220,:,det_y_crop]) plt.figure() -#plt.imshow(FBPrec[0,150:550,150:550], vmin=0, vmax=0.005, cmap="gray") plt.imshow(FBPrec[0,:,:], vmin=0, vmax=0.005, cmap="gray") plt.title('FBP reconstruction') +FBPrec += np.abs(np.min(FBPrec)) +multiplier = (int)(65535/(np.max(FBPrec))) + +# saving to tiffs (16bit) +for i in range(0,np.size(FBPrec,0)): + tiff = TIFF.open('Dendr_FBP'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(FBPrec[i,:,:]*multiplier)) + tiff.close() +""" #%% print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("Reconstructing with ADMM method using TomoRec software") @@ -79,7 +89,7 @@ print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") # initialise TomoRec ITERATIVE reconstruction class ONCE from tomorec.methodsIR import RecToolsIR RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) - DetectorsDimV = 5, # DetectorsDimV # detector dimension (vertical) for 3D case only + DetectorsDimV = 200, # DetectorsDimV # detector dimension (vertical) for 3D case only AnglesVec = angles_rad, # array of angles in radians ObjSize = N_size, # a scalar to define reconstructed object dimensions datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) @@ -88,29 +98,125 @@ RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # tolerance = 1e-08, # tolerance to stop outer iterations earlier device='gpu') #%% -print ("Reconstructing with ADMM method using ROF-TV penalty") +print ("Reconstructing with ADMM method using SB-TV penalty") +RecADMM_reg_sbtv = RectoolsIR.ADMM(data_norm[20:220,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'SB_TV', \ + regularisation_parameter = 0.00085,\ + regularisation_iterations = 50) + +sliceSel = 5 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_sbtv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_sbtv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_sbtv[:,:,sliceSel],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, sagittal view') +plt.show() + +multiplier = (int)(65535/(np.max(RecADMM_reg_sbtv))) + +# saving to tiffs (16bit) +for i in range(0,np.size(RecADMM_reg_sbtv,0)): + tiff = TIFF.open('Dendr_ADMM_SBTV'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_sbtv[i,:,:]*multiplier)) + tiff.close() -RecADMM_reg_roftv = RectoolsIR.ADMM(data_norm[0:5,:,det_y_crop], +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_SBTV'+str(time_label)+'.npy', RecADMM_reg_sbtv) +del RecADMM_reg_sbtv +#%% +print ("Reconstructing with ADMM method using ROF-LLT penalty") +RecADMM_reg_rofllt = RectoolsIR.ADMM(data_norm[20:220,:,det_y_crop], rho_const = 2000.0, \ - iterationsADMM = 3, \ - regularisation = 'FGP_TV', \ - regularisation_parameter = 0.001,\ - regularisation_iterations = 80) + iterationsADMM = 15, \ + regularisation = 'LLT_ROF', \ + regularisation_parameter = 0.0009,\ + regularisation_parameter2 = 0.0007,\ + time_marching_parameter = 0.001,\ + regularisation_iterations = 450) + +sliceSel = 5 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_rofllt[sliceSel,:,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_rofllt[:,sliceSel,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_rofllt[:,:,sliceSel],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, sagittal view') +plt.show() + +multiplier = (int)(65535/(np.max(RecADMM_reg_rofllt))) + +# saving to tiffs (16bit) +for i in range(0,np.size(RecADMM_reg_rofllt,0)): + tiff = TIFF.open('Dendr_ADMM_ROFLLT'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_rofllt[i,:,:]*multiplier)) + tiff.close() + + +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_ROFLLT'+str(time_label)+'.npy', RecADMM_reg_rofllt) +del RecADMM_reg_rofllt +#%% +RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = 10, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = angles_rad, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) + nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') + OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets + tolerance = 1e-08, # tolerance to stop outer iterations earlier + device='cpu') +print ("Reconstructing with ADMM method using TGV penalty") +RecADMM_reg_tgv = RectoolsIR.ADMM(data_norm[0:10,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'TGV', \ + regularisation_parameter = 0.01,\ + regularisation_iterations = 450) -sliceSel = 2 -max_val = 0.005 +sliceSel = 7 +max_val = 0.003 plt.figure() plt.subplot(131) -plt.imshow(RecADMM_reg_roftv[sliceSel,:,:],vmin=0, vmax=max_val) -plt.title('3D ADMM-ROF-TV Reconstruction, axial view') +plt.imshow(RecADMM_reg_tgv[sliceSel,:,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, axial view') plt.subplot(132) -plt.imshow(RecADMM_reg_roftv[:,sliceSel,:],vmin=0, vmax=max_val) -plt.title('3D ADMM-ROF-TV Reconstruction, coronal view') +plt.imshow(RecADMM_reg_tgv[:,sliceSel,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, coronal view') plt.subplot(133) -plt.imshow(RecADMM_reg_roftv[:,:,sliceSel],vmin=0, vmax=max_val) -plt.title('3D ADMM-ROF-TV Reconstruction, sagittal view') +plt.imshow(RecADMM_reg_tgv[:,:,sliceSel],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, sagittal view') plt.show() + +multiplier = (int)(65535/(np.max(RecADMM_reg_tgv))) + +# saving to tiffs (16bit) +for i in range(0,np.size(RecADMM_reg_tgv,0)): + tiff = TIFF.open('Dendr_ADMM_TGV'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_tgv[i,:,:]*multiplier)) + tiff.close() + + +# Saving recpnstructed data with a unique time label +#np.save('Dendr_ADMM_TGV'+str(time_label)+'.npy', RecADMM_reg_tgv) +del RecADMM_reg_tgv #%% \ No newline at end of file diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py index 5dbd436..a022ad7 100644 --- a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py @@ -197,32 +197,3 @@ Qtools = QualityTools(phantom, RecADMM_reg_tgv) RMSE_admm_tgv = Qtools.rmse() print("Root Mean Square Error for ADMM-TGV is {}".format(RMSE_admm_tgv)) #%% -print ("Reconstructing with ADMM method using Diff4th penalty") -RecADMM_reg_diff4th = RectoolsIR.ADMM(projdata_norm, - rho_const = 2000.0, \ - iterationsADMM = 30, \ - regularisation = 'Diff4th', \ - regularisation_parameter = 0.0005,\ - regularisation_iterations = 200) - -sliceSel = int(0.5*N_size) -max_val = 1 -plt.figure() -plt.subplot(131) -plt.imshow(RecADMM_reg_diff4th[sliceSel,:,:],vmin=0, vmax=max_val) -plt.title('3D ADMM-Diff4th Reconstruction, axial view') - -plt.subplot(132) -plt.imshow(RecADMM_reg_diff4th[:,sliceSel,:],vmin=0, vmax=max_val) -plt.title('3D ADMM-Diff4th Reconstruction, coronal view') - -plt.subplot(133) -plt.imshow(RecADMM_reg_diff4th[:,:,sliceSel],vmin=0, vmax=max_val) -plt.title('3D ADMM-Diff4th Reconstruction, sagittal view') -plt.show() - -# calculate errors -Qtools = QualityTools(phantom, RecADMM_reg_diff4th) -RMSE_admm_diff4th = Qtools.rmse() -print("Root Mean Square Error for ADMM-Diff4th is {}".format(RMSE_admm_diff4th)) -#%% -- cgit v1.2.3