From 808860a03e254bf52fe5c6b5f3df883ccd62d714 Mon Sep 17 00:00:00 2001 From: dkazanc Date: Wed, 20 Feb 2019 14:31:50 +0000 Subject: progress sim data --- .../SoftwareX_supp/Demo_SimulData_Recon_SX.py | 75 +++----------- .../demos/SoftwareX_supp/Demo_SimulData_SX.py | 114 +++++++++++++++------ 2 files changed, 100 insertions(+), 89 deletions(-) (limited to 'Wrappers/Python') diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py index 0a99951..7d22bfd 100644 --- a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py @@ -13,93 +13,50 @@ ____________________________________________________________________________ 1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox 2. TomoRec: conda install -c dkazanc tomorec or install from https://github.com/dkazanc/TomoRec -3. TomoPhantom software for data generation @author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk GPLv3 license (ASTRA toolbox) """ import timeit -import os import matplotlib.pyplot as plt import numpy as np +import h5py from tomophantom.supp.qualitymetrics import QualityTools -print ("Building 3D phantom using TomoPhantom software") -tic=timeit.default_timer() -model = 9 # select a model number from the library -N_size = 128 # Define phantom dimensions using a scalar value (cubic phantom) -path = os.path.dirname(tomophantom.__file__) -path_library3D = os.path.join(path, "Phantom3DLibrary.dat") -#This will generate a N_size x N_size x N_size phantom (3D) -phantom_tm = TomoP3D.Model(model, N_size, path_library3D) -toc=timeit.default_timer() -Run_time = toc - tic -print("Phantom has been built in {} seconds".format(Run_time)) +# loading data +h5f = h5py.File('data/TomoSim_data1550671417.h5','r') +phantom = h5f['phantom'][:] +projdata_norm = h5f['projdata_norm'][:] +proj_angles = h5f['proj_angles'][:] +h5f.close() -sliceSel = int(0.5*N_size) + +sliceSel = 128 #plt.gray() plt.figure() plt.subplot(131) -plt.imshow(phantom_tm[sliceSel,:,:],vmin=0, vmax=1) +plt.imshow(phantom[sliceSel,:,:],vmin=0, vmax=1) plt.title('3D Phantom, axial view') plt.subplot(132) -plt.imshow(phantom_tm[:,sliceSel,:],vmin=0, vmax=1) +plt.imshow(phantom[:,sliceSel,:],vmin=0, vmax=1) plt.title('3D Phantom, coronal view') plt.subplot(133) -plt.imshow(phantom_tm[:,:,sliceSel],vmin=0, vmax=1) +plt.imshow(phantom[:,:,sliceSel],vmin=0, vmax=1) plt.title('3D Phantom, sagittal view') plt.show() -# Projection geometry related parameters: -Horiz_det = int(np.sqrt(2)*N_size) # detector column count (horizontal) -Vert_det = N_size # detector row count (vertical) (no reason for it to be > N) -angles_num = int(0.25*np.pi*N_size); # angles number -angles = np.linspace(0.0,179.9,angles_num,dtype='float32') # in degrees -angles_rad = angles*(np.pi/180.0) -#%% -print ("Building 3D analytical projection data with TomoPhantom") -projData3D_analyt= TomoP3D.ModelSino(model, N_size, Horiz_det, Vert_det, angles, path_library3D) - -intens_max = 70 -sliceSel = 150 -plt.figure() -plt.subplot(131) -plt.imshow(projData3D_analyt[:,sliceSel,:],vmin=0, vmax=intens_max) -plt.title('2D Projection (analytical)') -plt.subplot(132) -plt.imshow(projData3D_analyt[sliceSel,:,:],vmin=0, vmax=intens_max) -plt.title('Sinogram view') -plt.subplot(133) -plt.imshow(projData3D_analyt[:,:,sliceSel],vmin=0, vmax=intens_max) -plt.title('Tangentogram view') -plt.show() -#%% -print ("Simulate flat fields, add noise and normalise projections...") -flatsnum = 20 # generate 20 flat fields -flatsSIM = flats(Vert_det, Horiz_det, maxheight = 0.1, maxthickness = 3, sigma_noise = 0.2, sigmasmooth = 3, flatsnum=flatsnum) - -plt.figure() -plt.imshow(flatsSIM[0,:,:],vmin=0, vmax=1) -plt.title('A selected simulated flat-field') -#%% -# Apply normalisation of data and add noise -flux_intensity = 10000 # controls the level of noise -sigma_flats = 0.085 # contro the level of noise in flats (higher creates more ring artifacts) -projData3D_norm = normaliser_sim(projData3D_analyt, flatsSIM, sigma_flats, flux_intensity) - -intens_max = 70 -sliceSel = 150 +intens_max = 240 plt.figure() plt.subplot(131) -plt.imshow(projData3D_norm[:,sliceSel,:],vmin=0, vmax=intens_max) +plt.imshow(projdata_norm[:,sliceSel,:],vmin=0, vmax=intens_max) plt.title('2D Projection (erroneous)') plt.subplot(132) -plt.imshow(projData3D_norm[sliceSel,:,:],vmin=0, vmax=intens_max) +plt.imshow(projdata_norm[sliceSel,:,:],vmin=0, vmax=intens_max) plt.title('Sinogram view') plt.subplot(133) -plt.imshow(projData3D_norm[:,:,sliceSel],vmin=0, vmax=intens_max) +plt.imshow(projdata_norm[:,:,sliceSel],vmin=0, vmax=intens_max) plt.title('Tangentogram view') plt.show() #%% diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py index 3265d37..ce29f0c 100644 --- a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py @@ -12,52 +12,106 @@ some imaging errors and noise ____________________________________________________________________________ >>>>> Dependencies: <<<<< -1. TomoPhantom software for data generation +1. TomoPhantom software for phantom and data generation @author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk Apache 2.0 license """ -import numpy as np +import timeit +import os import matplotlib.pyplot as plt -import scipy.io -from tomorec.supp.suppTools import normaliser - -# load dendritic data -datadict = scipy.io.loadmat('Rawdata_1_frame3D.mat') -# extract data (print(datadict.keys())) -dataRaw = datadict['Rawdata3D'] -angles = datadict['AnglesAr'] -flats = datadict['flats3D'] -darks= datadict['darks3D'] - -dataRaw = np.swapaxes(dataRaw,0,1) -#%% -#flats2 = np.zeros((np.size(flats,0),1, np.size(flats,1)), dtype='float32') -#flats2[:,0,:] = flats[:] -#darks2 = np.zeros((np.size(darks,0),1, np.size(darks,1)), dtype='float32') -#darks2[:,0,:] = darks[:] +import numpy as np +import tomophantom +from tomophantom import TomoP3D +from tomophantom.supp.flatsgen import flats +from tomophantom.supp.normraw import normaliser_sim + +print ("Building 3D phantom using TomoPhantom software") +tic=timeit.default_timer() +model = 16 # select a model number from the library +N_size = 256 # Define phantom dimensions using a scalar value (cubic phantom) +path = os.path.dirname(tomophantom.__file__) +path_library3D = os.path.join(path, "Phantom3DLibrary.dat") +#This will generate a N_size x N_size x N_size phantom (3D) +phantom_tm = TomoP3D.Model(model, N_size, path_library3D) +toc=timeit.default_timer() +Run_time = toc - tic +print("Phantom has been built in {} seconds".format(Run_time)) + +sliceSel = int(0.5*N_size) +#plt.gray() +plt.figure() +plt.subplot(131) +plt.imshow(phantom_tm[sliceSel,:,:],vmin=0, vmax=1) +plt.title('3D Phantom, axial view') + +plt.subplot(132) +plt.imshow(phantom_tm[:,sliceSel,:],vmin=0, vmax=1) +plt.title('3D Phantom, coronal view') -# normalise the data, required format is [detectorsHoriz, Projections, Slices] -data_norm = normaliser(dataRaw, flats, darks, log='log') +plt.subplot(133) +plt.imshow(phantom_tm[:,:,sliceSel],vmin=0, vmax=1) +plt.title('3D Phantom, sagittal view') +plt.show() -#dataRaw = np.float32(np.divide(dataRaw, np.max(dataRaw).astype(float))) +# Projection geometry related parameters: +Horiz_det = int(np.sqrt(2)*N_size) # detector column count (horizontal) +Vert_det = N_size # detector row count (vertical) (no reason for it to be > N) +angles_num = int(0.35*np.pi*N_size); # angles number +angles = np.linspace(0.0,179.9,angles_num,dtype='float32') # in degrees +angles_rad = angles*(np.pi/180.0) +#%% +print ("Building 3D analytical projection data with TomoPhantom") +projData3D_analyt= TomoP3D.ModelSino(model, N_size, Horiz_det, Vert_det, angles, path_library3D) -intens_max = 70 +intens_max = N_size +sliceSel = int(0.5*N_size) plt.figure() plt.subplot(131) -plt.imshow(data_norm[:,150,:],vmin=0, vmax=intens_max) +plt.imshow(projData3D_analyt[:,sliceSel,:],vmin=0, vmax=intens_max) plt.title('2D Projection (analytical)') plt.subplot(132) -plt.imshow(data_norm[:,:,300],vmin=0, vmax=intens_max) +plt.imshow(projData3D_analyt[sliceSel,:,:],vmin=0, vmax=intens_max) plt.title('Sinogram view') plt.subplot(133) -plt.imshow(data_norm[600,:,:],vmin=0, vmax=intens_max) +plt.imshow(projData3D_analyt[:,:,sliceSel],vmin=0, vmax=intens_max) plt.title('Tangentogram view') plt.show() +#%% +print ("Simulate flat fields, add noise and normalise projections...") +flatsnum = 20 # generate 20 flat fields +flatsSIM = flats(Vert_det, Horiz_det, maxheight = 0.1, maxthickness = 3, sigma_noise = 0.2, sigmasmooth = 3, flatsnum=flatsnum) +plt.figure() +plt.imshow(flatsSIM[0,:,:],vmin=0, vmax=1) +plt.title('A selected simulated flat-field') +#%% +# Apply normalisation of data and add noise +flux_intensity = 60000 # controls the level of noise +sigma_flats = 0.01 # contro the level of noise in flats (higher creates more ring artifacts) +projData3D_norm = normaliser_sim(projData3D_analyt, flatsSIM, sigma_flats, flux_intensity) -detectorHoriz = np.size(data_norm,0) -N_size = 1000 -slice_to_recon = 0 # select which slice to reconstruct -angles_rad = angles*(np.pi/180.0) +intens_max = N_size +sliceSel = int(0.5*N_size) +plt.figure() +plt.subplot(131) +plt.imshow(projData3D_norm[:,sliceSel,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (erroneous)') +plt.subplot(132) +plt.imshow(projData3D_norm[sliceSel,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(projData3D_norm[:,:,sliceSel],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() #%% +import h5py +import time +time_label = int(time.time()) +# Saving generated data with a unique time label +h5f = h5py.File('TomoSim_data'+str(time_label)+'.h5', 'w') +h5f.create_dataset('phantom', data=phantom_tm) +h5f.create_dataset('projdata_norm', data=projData3D_norm) +h5f.create_dataset('proj_angles', data=angles_rad) +h5f.close() +#%% \ No newline at end of file -- cgit v1.2.3