From 970e82c7ee5fedab771480f42293963fdc32d17b Mon Sep 17 00:00:00 2001 From: dkazanc Date: Mon, 9 Dec 2019 14:08:21 +0000 Subject: fixes gpu issues with pdtv --- src/Matlab/mex_compile/regularisers_CPU/PD_TV.c | 50 +++++++++++----------- .../mex_compile/regularisers_GPU/PD_TV_GPU.cpp | 49 ++++++++++----------- 2 files changed, 47 insertions(+), 52 deletions(-) (limited to 'src/Matlab') diff --git a/src/Matlab/mex_compile/regularisers_CPU/PD_TV.c b/src/Matlab/mex_compile/regularisers_CPU/PD_TV.c index e5ab1e4..f8f5272 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/PD_TV.c +++ b/src/Matlab/mex_compile/regularisers_CPU/PD_TV.c @@ -30,8 +30,7 @@ * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1) * 6. nonneg: 'nonnegativity (0 is OFF by default, 1 is ON) * 7. lipschitz_const: convergence related parameter - * 8. tau: convergence related parameter - + * Output: * [1] TV - Filtered/regularized image/volume * [2] Information vector which contains [iteration no., reached tolerance] @@ -41,19 +40,19 @@ void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) - + { int number_of_dims, iter, methTV, nonneg; mwSize dimX, dimY, dimZ; const mwSize *dim_array; - float *Input, *infovec=NULL, *Output=NULL, lambda, epsil, lipschitz_const, tau; - + float *Input, *infovec=NULL, *Output=NULL, lambda, epsil, lipschitz_const; + number_of_dims = mxGetNumberOfDimensions(prhs[0]); dim_array = mxGetDimensions(prhs[0]); - + /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, lipschitz_const"); - + if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, lipschitz_const"); + Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ iter = 500; /* default iterations number */ @@ -61,40 +60,39 @@ void mexFunction( methTV = 0; /* default isotropic TV penalty */ nonneg = 0; /* default nonnegativity switch, off - 0 */ lipschitz_const = 8.0; /* lipschitz_const */ - tau = 0.0025; /* tau convergence const */ - + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8)) { + + if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ + if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ + if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) { char *penalty_type; penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ mxFree(penalty_type); } - if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8)) { + if ((nrhs == 6) || (nrhs == 7)) { nonneg = (int) mxGetScalar(prhs[5]); if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); } - if ((nrhs == 7) || (nrhs == 8)) lipschitz_const = (float) mxGetScalar(prhs[6]); - if (nrhs == 8) tau = (float) mxGetScalar(prhs[7]); - + if (nrhs == 7) lipschitz_const = (float) mxGetScalar(prhs[6]); + /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + if (number_of_dims == 2) { dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); } - if (number_of_dims == 3) { + if (number_of_dims == 3) { Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - } + } mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - PDTV_CPU_main(Input, Output, infovec, lambda, iter, epsil, lipschitz_const, methTV, nonneg, tau, dimX, dimY, dimZ); + + /* running the function */ + PDTV_CPU_main(Input, Output, infovec, lambda, iter, epsil, lipschitz_const, methTV, nonneg, dimX, dimY, dimZ); } diff --git a/src/Matlab/mex_compile/regularisers_GPU/PD_TV_GPU.cpp b/src/Matlab/mex_compile/regularisers_GPU/PD_TV_GPU.cpp index e853dd3..2c037a5 100644 --- a/src/Matlab/mex_compile/regularisers_GPU/PD_TV_GPU.cpp +++ b/src/Matlab/mex_compile/regularisers_GPU/PD_TV_GPU.cpp @@ -30,8 +30,7 @@ * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1) * 6. nonneg: 'nonnegativity (0 is OFF by default, 1 is ON) * 7. lipschitz_const: convergence related parameter - * 8. tau: convergence related parameter - + * Output: * [1] TV - Filtered/regularized image/volume * [2] Information vector which contains [iteration no., reached tolerance] @@ -42,19 +41,19 @@ void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) - + { int number_of_dims, iter, methTV, nonneg; mwSize dimX, dimY, dimZ; const mwSize *dim_array; - float *Input, *infovec=NULL, *Output=NULL, lambda, epsil, lipschitz_const, tau; - + float *Input, *infovec=NULL, *Output=NULL, lambda, epsil, lipschitz_const; + number_of_dims = mxGetNumberOfDimensions(prhs[0]); dim_array = mxGetDimensions(prhs[0]); - + /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, lipschitz_const"); - + if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, lipschitz_const"); + Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ iter = 500; /* default iterations number */ @@ -62,40 +61,38 @@ void mexFunction( methTV = 0; /* default isotropic TV penalty */ nonneg = 0; /* default nonnegativity switch, off - 0 */ lipschitz_const = 8.0; /* lipschitz_const */ - tau = 0.0025; /* tau convergence const */ - + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8)) { + + if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ + if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ + if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) { char *penalty_type; penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ mxFree(penalty_type); } - if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8)) { + if ((nrhs == 6) || (nrhs == 7)) { nonneg = (int) mxGetScalar(prhs[5]); if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); } - if ((nrhs == 7) || (nrhs == 8)) lipschitz_const = (float) mxGetScalar(prhs[6]); - if (nrhs == 8) tau = (float) mxGetScalar(prhs[7]); - + if (nrhs == 7) lipschitz_const = (float) mxGetScalar(prhs[6]); + /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + if (number_of_dims == 2) { dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); } - if (number_of_dims == 3) { + if (number_of_dims == 3) { Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - } + } mwSize vecdim[1]; vecdim[0] = 2; infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - TV_PD_GPU_main(Input, Output, infovec, lambda, iter, epsil, lipschitz_const, methTV, nonneg, tau, dimX, dimY, dimZ); + + /* running the function */ + TV_PD_GPU_main(Input, Output, infovec, lambda, iter, epsil, lipschitz_const, methTV, nonneg, dimX, dimY, dimZ); } -- cgit v1.2.3