From e2208bfc2ed540065bef2e8e12d914d873464da7 Mon Sep 17 00:00:00 2001 From: Daniil Kazantsev Date: Sun, 10 Mar 2019 22:23:22 +0000 Subject: all python code updated --- src/Matlab/mex_compile/compileCPU_mex_Linux.m | 93 ++++++++++++------------ src/Matlab/mex_compile/regularisers_CPU/FGP_TV.c | 27 +++---- src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c | 14 +++- src/Matlab/mex_compile/regularisers_CPU/SB_TV.c | 32 ++++---- 4 files changed, 87 insertions(+), 79 deletions(-) (limited to 'src/Matlab') diff --git a/src/Matlab/mex_compile/compileCPU_mex_Linux.m b/src/Matlab/mex_compile/compileCPU_mex_Linux.m index f3d9ce1..d8035f4 100644 --- a/src/Matlab/mex_compile/compileCPU_mex_Linux.m +++ b/src/Matlab/mex_compile/compileCPU_mex_Linux.m @@ -11,7 +11,7 @@ copyfile(pathcopyFrom1, 'regularisers_CPU'); copyfile(pathcopyFrom2, 'regularisers_CPU'); cd regularisers_CPU - +%% Pathmove = sprintf(['..' fsep 'installed' fsep], 1i); fprintf('%s \n', '<<<<<<<<<<>>>>>>>>>>>>'); @@ -27,56 +27,55 @@ movefile('FGP_TV.mex*',Pathmove); fprintf('%s \n', 'Compiling SB-TV...'); mex SB_TV.c SB_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" movefile('SB_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling dFGP-TV...'); -mex FGP_dTV.c FGP_dTV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('FGP_dTV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TNV...'); -mex TNV.c TNV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('TNV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLinear Diffusion...'); -mex NonlDiff.c Diffusion_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('NonlDiff.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...'); -mex Diffusion_4thO.c Diffus4th_order_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('Diffusion_4thO.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TGV...'); -mex TGV.c TGV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('TGV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling ROF-LLT...'); -mex LLT_ROF.c LLT_ROF_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('LLT_ROF.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLocal-TV...'); -mex PatchSelect.c PatchSelect_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -mex Nonlocal_TV.c Nonlocal_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('Nonlocal_TV.mex*',Pathmove); -movefile('PatchSelect.mex*',Pathmove); - -fprintf('%s \n', 'Compiling additional tools...'); -mex TV_energy.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('TV_energy.mex*',Pathmove); +% +% fprintf('%s \n', 'Compiling dFGP-TV...'); +% mex FGP_dTV.c FGP_dTV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +% movefile('FGP_dTV.mex*',Pathmove); +% +% fprintf('%s \n', 'Compiling TNV...'); +% mex TNV.c TNV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +% movefile('TNV.mex*',Pathmove); +% +% fprintf('%s \n', 'Compiling NonLinear Diffusion...'); +% mex NonlDiff.c Diffusion_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +% movefile('NonlDiff.mex*',Pathmove); +% +% fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...'); +% mex Diffusion_4thO.c Diffus4th_order_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +% movefile('Diffusion_4thO.mex*',Pathmove); +% +% fprintf('%s \n', 'Compiling TGV...'); +% mex TGV.c TGV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +% movefile('TGV.mex*',Pathmove); +% +% fprintf('%s \n', 'Compiling ROF-LLT...'); +% mex LLT_ROF.c LLT_ROF_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +% movefile('LLT_ROF.mex*',Pathmove); +% +% fprintf('%s \n', 'Compiling NonLocal-TV...'); +% mex PatchSelect.c PatchSelect_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +% mex Nonlocal_TV.c Nonlocal_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +% movefile('Nonlocal_TV.mex*',Pathmove); +% movefile('PatchSelect.mex*',Pathmove); +% +% fprintf('%s \n', 'Compiling additional tools...'); +% mex TV_energy.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +% movefile('TV_energy.mex*',Pathmove); %############Inpainters##############% -fprintf('%s \n', 'Compiling Nonlinear/Linear diffusion inpainting...'); -mex NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('NonlDiff_Inp.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Nonlocal marching method for inpainting...'); -mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('NonlocalMarching_Inpaint.mex*',Pathmove); - +% fprintf('%s \n', 'Compiling Nonlinear/Linear diffusion inpainting...'); +% mex NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +% movefile('NonlDiff_Inp.mex*',Pathmove); +% +% fprintf('%s \n', 'Compiling Nonlocal marching method for inpainting...'); +% mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +% movefile('NonlocalMarching_Inpaint.mex*',Pathmove); +% delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* LLT_ROF_core* CCPiDefines.h delete PatchSelect_core* Nonlocal_TV_core* delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core* fprintf('%s \n', '<<<<<<< Regularisers successfully compiled! >>>>>>>'); -%pathA2 = sprintf(['..' fsep '..' fsep], 1i); -% cd(pathA2); -cd('/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/demos') -%cd demos +pathA2 = sprintf(['..' fsep '..' fsep '..' fsep '..' fsep 'demos'], 1i); +cd(pathA2); + diff --git a/src/Matlab/mex_compile/regularisers_CPU/FGP_TV.c b/src/Matlab/mex_compile/regularisers_CPU/FGP_TV.c index 603e0f4..f160b15 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/FGP_TV.c +++ b/src/Matlab/mex_compile/regularisers_CPU/FGP_TV.c @@ -29,10 +29,10 @@ * 4. eplsilon: tolerance constant * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1) * 6. nonneg: 'nonnegativity (0 is OFF by default) - * 7. print information: 0 (off) or 1 (on) * * Output: * [1] Filtered/regularized image + * [2] Information vector which contains [iteration no., reached tolerance] * * This function is based on the Matlab's code and paper by * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" @@ -44,10 +44,10 @@ void mexFunction( int nrhs, const mxArray *prhs[]) { - int number_of_dims, iter, methTV, printswitch, nonneg; + int number_of_dims, iter, methTV, nonneg; mwSize dimX, dimY, dimZ; const mwSize *dim_array; - float *Input, *Output=NULL, *Output2=NULL, lambda, epsil; + float *Input, *infovec=NULL, *Output=NULL, lambda, epsil; number_of_dims = mxGetNumberOfDimensions(prhs[0]); dim_array = mxGetDimensions(prhs[0]); @@ -57,11 +57,10 @@ void mexFunction( Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 300; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ + iter = 400; /* default iterations number */ + epsil = 0.0; /* default tolerance constant */ methTV = 0; /* default isotropic TV penalty */ nonneg = 0; /* default nonnegativity switch, off - 0 */ -// printswitch = 0; /*default print is switched, off - 0 */ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } @@ -81,17 +80,19 @@ void mexFunction( /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + if (number_of_dims == 2) { dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - Output2 = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); } if (number_of_dims == 3) { - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - } + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + } + int vecdim[1]; + vecdim[0] = 2; + infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); /* running the function */ - TV_FGP_CPU_main(Input, Output, Output2, lambda, iter, epsil, methTV, nonneg, dimX, dimY, dimZ); + TV_FGP_CPU_main(Input, Output, infovec, lambda, iter, epsil, methTV, nonneg, dimX, dimY, dimZ); } diff --git a/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c b/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c index 55ef2b1..a7d431f 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c +++ b/src/Matlab/mex_compile/regularisers_CPU/ROF_TV.c @@ -29,9 +29,11 @@ * 2. lambda - regularization parameter [REQUIRED] * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED] + * 5. eplsilon: tolerance constant [REQUIRED] * * Output: * [1] Regularized image/volume + * [2] Information vector which contains [iteration no., reached tolerance] * * This function is based on the paper by * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" @@ -47,7 +49,8 @@ void mexFunction( int number_of_dims, iter_numb; mwSize dimX, dimY, dimZ; const mwSize *dim_array_i; - float *Input, *Output=NULL, lambda, tau; + float *Input, *Output=NULL, lambda, tau, epsil; + float *infovec=NULL; dim_array_i = mxGetDimensions(prhs[0]); number_of_dims = mxGetNumberOfDimensions(prhs[0]); @@ -57,9 +60,10 @@ void mexFunction( lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ iter_numb = (int) mxGetScalar(prhs[2]); /* iterations number */ tau = (float) mxGetScalar(prhs[3]); /* marching step parameter */ + epsil = (float) mxGetScalar(prhs[4]); /* tolerance */ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number, marching step constant"); + if(nrhs != 5) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number, marching step constant, tolerance"); /*Handling Matlab output data*/ dimX = dim_array_i[0]; dimY = dim_array_i[1]; dimZ = dim_array_i[2]; @@ -72,6 +76,10 @@ void mexFunction( if (number_of_dims == 3) { Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array_i, mxSINGLE_CLASS, mxREAL)); } + + int vecdim[1]; + vecdim[0] = 2; + infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); - TV_ROF_CPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ); + TV_ROF_CPU_main(Input, Output, infovec, lambda, iter_numb, tau, epsil, dimX, dimY, dimZ); } \ No newline at end of file diff --git a/src/Matlab/mex_compile/regularisers_CPU/SB_TV.c b/src/Matlab/mex_compile/regularisers_CPU/SB_TV.c index 8636322..495f1c9 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/SB_TV.c +++ b/src/Matlab/mex_compile/regularisers_CPU/SB_TV.c @@ -28,10 +28,10 @@ * 3. Number of iterations [OPTIONAL parameter] * 4. eplsilon - tolerance constant [OPTIONAL parameter] * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter] * -* Output: -* 1. Filtered/regularized image + * Output: + * [1] Regularized image/volume + * [2] Information vector which contains [iteration no., reached tolerance] * * This function is based on the Matlab's code and paper by * [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. @@ -42,40 +42,36 @@ void mexFunction( int nrhs, const mxArray *prhs[]) { - int number_of_dims, iter, methTV, printswitch; + int number_of_dims, iter, methTV; mwSize dimX, dimY, dimZ; const mwSize *dim_array; float *Input, *Output=NULL, lambda, epsil; + float *infovec=NULL; number_of_dims = mxGetNumberOfDimensions(prhs[0]); dim_array = mxGetDimensions(prhs[0]); /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch"); + if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter,iterations number, tolerance, penalty type ('iso' or 'l1')"); Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 100; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ + iter = 200; /* default iterations number */ + epsil = 1.0e-06; /* default tolerance constant */ methTV = 0; /* default isotropic TV penalty */ - printswitch = 0; /*default print is switched, off - 0 */ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6)) { + if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ + if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ + if ((nrhs == 5)) { char *penalty_type; penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ mxFree(penalty_type); } - if (nrhs == 6) { - printswitch = (int) mxGetScalar(prhs[5]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } /*Handling Matlab output data*/ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; @@ -86,6 +82,10 @@ void mexFunction( } if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + int vecdim[1]; + vecdim[0] = 2; + infovec = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(1, vecdim, mxSINGLE_CLASS, mxREAL)); + /* running the function */ - SB_TV_CPU_main(Input, Output, lambda, iter, epsil, methTV, printswitch, dimX, dimY, dimZ); + SB_TV_CPU_main(Input, Output, infovec, lambda, iter, epsil, methTV, dimX, dimY, dimZ); } -- cgit v1.2.3