From ff9cc12694172e1e8720f7ea7f5b22e647722e21 Mon Sep 17 00:00:00 2001 From: Edoardo Pasca Date: Wed, 25 Oct 2017 16:56:17 +0100 Subject: doing work --- src/Python/test/test_regularizers_3d.py | 471 +++++++++++++++++--------------- 1 file changed, 258 insertions(+), 213 deletions(-) (limited to 'src') diff --git a/src/Python/test/test_regularizers_3d.py b/src/Python/test/test_regularizers_3d.py index a2e3027..2d11a7e 100644 --- a/src/Python/test/test_regularizers_3d.py +++ b/src/Python/test/test_regularizers_3d.py @@ -5,17 +5,17 @@ Created on Fri Aug 4 11:10:05 2017 @author: ofn77899 """ -from ccpi.viewer.CILViewer2D import Converter -import vtk +#from ccpi.viewer.CILViewer2D import Converter +#import vtk -import regularizers import matplotlib.pyplot as plt import numpy as np import os from enum import Enum import timeit - -from Regularizer import Regularizer +#from PIL import Image +#from Regularizer import Regularizer +from ccpi.imaging.Regularizer import Regularizer ############################################################################### #https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 @@ -46,77 +46,303 @@ def nrmse(im1, im2): # u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; # u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + #filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" +filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif" +#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif' + #reader = vtk.vtkTIFFReader() #reader.SetFileName(os.path.normpath(filename)) #reader.Update() -##vtk returns 3D images, let's take just the one slice there is as 2D -#Im = Converter.vtk2numpy(reader.GetOutput()).T[0]/255 +Im = plt.imread(filename) +#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255 +#img.show() +Im = np.asarray(Im, dtype='float32') + +# create a 3D image by stacking N of this images + + +#imgplot = plt.imshow(Im) +perc = 0.05 +u_n = Im + (perc* np.random.normal(size=np.shape(Im))) +y,z = np.shape(u_n) +u_n = np.reshape(u_n , (1,y,z)) + +u0 = u_n.copy() +for i in range (19): + u_n = Im + (perc* np.random.normal(size=np.shape(Im))) + u_n = np.reshape(u_n , (1,y,z)) + + u0 = np.vstack ( (u0, u_n) ) + +# map the u0 u0->u0>0 +f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = f(u0).astype('float32') + +print ("Passed image shape {0}".format(np.shape(u0))) + +## plot +fig = plt.figure() +#a=fig.add_subplot(3,3,1) +#a.set_title('Original') +#imgplot = plt.imshow(Im) +sliceno = 10 + +a=fig.add_subplot(2,3,1) +a.set_title('noise') +imgplot = plt.imshow(u0[sliceno],cmap="gray") + +reg_output = [] +############################################################################## +# Call regularizer + +####################### SplitBregman_TV ##################################### +# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + +use_object = True +if use_object: + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + print (reg.pars) + reg.setParameter(input=u0) + reg.setParameter(regularization_parameter=10.) + # or + # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + #TV_Penalty=Regularizer.TotalVariationPenalty.l1) + plotme = reg() [0] + pars = reg.pars + textstr = reg.printParametersToString() + + #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + # TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +else: + out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) + pars = out2[2] + reg_output.append(out2) + plotme = reg_output[-1][0] + textstr = out2[-1] + +a=fig.add_subplot(2,3,2) + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(plotme[sliceno],cmap="gray") + +###################### FGP_TV ######################################### +# u = FGP_TV(single(u0), 0.05, 100, 1e-04); +out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005, + number_of_iterations=50) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,3) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno]) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + +###################### LLT_model ######################################### +# * u0 = Im + .03*randn(size(Im)); % adding noise +# [Den] = LLT_model(single(u0), 10, 0.1, 1); +#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); +#input, regularization_parameter , time_step, number_of_iterations, +# tolerance_constant, restrictive_Z_smoothing=0 +out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, + time_step=0.0003, + tolerance_constant=0.0001, + number_of_iterations=300) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,4) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + + +# ###################### PatchBased_Regul ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); + +out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, + searching_window_ratio=3, + similarity_window_ratio=1, + PB_filtering_parameter=0.08) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,5) + + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + + +# ###################### TGV_PD ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); + + +out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, + first_order_term=1.3, + second_order_term=1, + number_of_iterations=550) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,6) + + +textstr = out2[-1] + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + + +plt.show() + +################################################################################ +## +## 3D Regularizers +## +################################################################################ +##Example: +## figure; +## Im = double(imread('lena_gray_256.tif'))/255; % loading image +## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# +##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha" +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha" # +#reader = vtk.vtkMetaImageReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() +##vtk returns 3D images, let's take just the one slice there is as 2D +#Im = Converter.vtk2numpy(reader.GetOutput()) +#Im = Im.astype('float32') ##imgplot = plt.imshow(Im) #perc = 0.05 #u0 = Im + (perc* np.random.normal(size=np.shape(Im))) ## map the u0 u0->u0>0 #f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) #u0 = f(u0).astype('float32') +#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(), +# reader.GetOutput().GetOrigin()) +#converter.Update() +#writer = vtk.vtkMetaImageWriter() +#writer.SetInputData(converter.GetOutput()) +#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha") +##writer.Write() +# # ### plot -#fig = plt.figure() +#fig3D = plt.figure() ##a=fig.add_subplot(3,3,1) ##a.set_title('Original') ##imgplot = plt.imshow(Im) +#sliceNo = 32 # -#a=fig.add_subplot(2,3,1) +#a=fig3D.add_subplot(2,3,1) #a.set_title('noise') -#imgplot = plt.imshow(u0) +#imgplot = plt.imshow(u0.T[sliceNo]) +# +#reg_output3d = [] # -#reg_output = [] ############################################################################### ## Call regularizer # ######################## SplitBregman_TV ##################################### ## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# ##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) -## +# ##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, ## #tolerance_constant=1e-4, ## TV_Penalty=Regularizer.TotalVariationPenalty.l1) # -##out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, -## tolerance_constant=1e-4, -## TV_Penalty=Regularizer.TotalVariationPenalty.l1) -#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) -#pars = out2[2] -#reg_output.append(out2) +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) +# +# +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) # -#a=fig.add_subplot(2,3,2) # #textstr = out2[-1] +# +# ## these are matplotlib.patch.Patch properties #props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) ## place a text box in upper left in axes coords #a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, # verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output[-1][0]) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) # ####################### FGP_TV ######################################### ## u = FGP_TV(single(u0), 0.05, 100, 1e-04); #out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, # number_of_iterations=200) #pars = out2[-2] +#reg_output3d.append(out2) # -#reg_output.append(out2) +#a=fig3D.add_subplot(2,3,2) # -#a=fig.add_subplot(2,3,3) # #textstr = out2[-1] # +# ## these are matplotlib.patch.Patch properties #props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) ## place a text box in upper left in axes coords #a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, # verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output[-1][0]) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) # ####################### LLT_model ######################################### ## * u0 = Im + .03*randn(size(Im)); % adding noise @@ -129,17 +355,20 @@ def nrmse(im1, im2): # tolerance_constant=0.0001, # number_of_iterations=300) #pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) # -#reg_output.append(out2) # -#a=fig.add_subplot(2,3,4) #textstr = out2[-1] +# +# ## these are matplotlib.patch.Patch properties #props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) ## place a text box in upper left in axes coords #a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, # verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output[-1][0]) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) # ####################### PatchBased_Regul ######################################### ## Quick 2D denoising example in Matlab: @@ -152,136 +381,6 @@ def nrmse(im1, im2): # similarity_window_ratio=1, # PB_filtering_parameter=0.08) #pars = out2[-2] -#reg_output.append(out2) -# -#a=fig.add_subplot(2,3,5) -# -# -#textstr = out2[-1] -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output[-1][0]) -# -# -####################### TGV_PD ######################################### -## Quick 2D denoising example in Matlab: -## Im = double(imread('lena_gray_256.tif'))/255; % loading image -## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -## u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); -# -# -#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, -# first_order_term=1.3, -# second_order_term=1, -# number_of_iterations=550) -#pars = out2[-2] -#reg_output.append(out2) -# -#a=fig.add_subplot(2,3,6) -# -# -#textstr = out2[-1] -# -# -## these are matplotlib.patch.Patch properties -#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -## place a text box in upper left in axes coords -#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -# verticalalignment='top', bbox=props) -#imgplot = plt.imshow(reg_output[-1][0]) -# - -############################################################################### -# -# 3D Regularizers -# -############################################################################### -#Example: -# figure; -# Im = double(imread('lena_gray_256.tif'))/255; % loading image -# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); - -#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha" -filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha" - -reader = vtk.vtkMetaImageReader() -reader.SetFileName(os.path.normpath(filename)) -reader.Update() -#vtk returns 3D images, let's take just the one slice there is as 2D -Im = Converter.vtk2numpy(reader.GetOutput()) -Im = Im.astype('float32') -#imgplot = plt.imshow(Im) -perc = 0.05 -u0 = Im + (perc* np.random.normal(size=np.shape(Im))) -# map the u0 u0->u0>0 -f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) -u0 = f(u0).astype('float32') -converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(), - reader.GetOutput().GetOrigin()) -converter.Update() -writer = vtk.vtkMetaImageWriter() -writer.SetInputData(converter.GetOutput()) -writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha") -#writer.Write() - - -## plot -fig3D = plt.figure(figsize=(20,16)) - -#a=fig.add_subplot(3,3,1) -#a.set_title('Original') -#imgplot = plt.imshow(Im) -sliceNo = 32 - -a=fig3D.add_subplot(2,3,1) -a.set_title('noise') -imgplot = plt.imshow(u0.T[sliceNo]) - -reg_output3d = [] - -############################################################################## -# Call regularizer - -####################### SplitBregman_TV ##################################### -# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); - -#reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) - -#out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, -# #tolerance_constant=1e-4, -# TV_Penalty=Regularizer.TotalVariationPenalty.l1) - -out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, - tolerance_constant=1e-4, - TV_Penalty=Regularizer.TotalVariationPenalty.l1) - - -pars = out2[-2] -reg_output3d.append(out2) - -a=fig3D.add_subplot(2,3,2) - - -textstr = out2[-1] - - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) - -###################### FGP_TV ######################################### -# u = FGP_TV(single(u0), 0.05, 100, 1e-04); -#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, -# number_of_iterations=200) -#pars = out2[-2] #reg_output3d.append(out2) # #a=fig3D.add_subplot(2,3,2) @@ -296,67 +395,15 @@ imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) #a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, # verticalalignment='top', bbox=props) #imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# -###################### LLT_model ######################################### -# * u0 = Im + .03*randn(size(Im)); % adding noise -# [Den] = LLT_model(single(u0), 10, 0.1, 1); -#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); -#input, regularization_parameter , time_step, number_of_iterations, -# tolerance_constant, restrictive_Z_smoothing=0 -out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, - time_step=0.0003, - tolerance_constant=0.0001, - number_of_iterations=300) -pars = out2[-2] -reg_output3d.append(out2) - -a=fig3D.add_subplot(2,3,3) - - -textstr = out2[-1] - - -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) - -###################### PatchBased_Regul ######################################### +###################### TGV_PD ######################################### # Quick 2D denoising example in Matlab: # Im = double(imread('lena_gray_256.tif'))/255; % loading image # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -# ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); - -out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, - searching_window_ratio=3, - similarity_window_ratio=1, - PB_filtering_parameter=0.08) -pars = out2[-2] -reg_output3d.append(out2) - -a=fig3D.add_subplot(2,3,4) - - -textstr = out2[-1] +# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) - - -####################### TGV_PD ######################################### -## Quick 2D denoising example in Matlab: -## Im = double(imread('lena_gray_256.tif'))/255; % loading image -## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -## u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); -# -# #out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, # first_order_term=1.3, # second_order_term=1, @@ -376,5 +423,3 @@ imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) #a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, # verticalalignment='top', bbox=props) #imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) -fig3D.savefig('test\\3d.png') -plt.close(fig3D) \ No newline at end of file -- cgit v1.2.3