summaryrefslogtreecommitdiffstats
path: root/Readme.md
blob: f155c168f15bd0f9145e8d98ad3bfa816bba152d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
Master: [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/)
Development status (PR, non-master branch): [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/badge/icon)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/)
# CCPi-Regularisation Toolkit (CCPi-RGL)

**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as, [ADMM](https://github.com/dkazanc/ADMM-tomo) and [FISTA](https://github.com/dkazanc/FISTA-tomo). Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.** 

<div align="center">
  <img src="docs/images/probl.png" height="225"><br>  
</div>

<div align="center">
  <img src="docs/images/reg_penalties.jpg" height="450"><br>  
</div>

<div align="center">
  <img src="docs/images/TV_vs_NLTV.jpg" height="300"><br>  
</div>

## Prerequisites: 

 * [MATLAB](www.mathworks.com/products/matlab/) OR
 * Python (tested ver. 3.5/2.7); Cython
 * C compilers
 * nvcc (CUDA SDK) compilers

## Package modules:

### Single-channel (denoising):
1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *1*)
2. Fast-Gradient-Projection (FGP) Total Variation **2D/3D CPU/GPU** (Ref. *2*)
3. Split-Bregman (SB) Total Variation **2D/3D CPU/GPU** (Ref. *5*)
4. Total Generalised Variation (TGV) model for higher-order regularisation **2D CPU/GPU** (Ref. *6*)
5. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *8*)
6. Anisotropic Fourth-Order Diffusion (explicit PDE minimisation) **2D/3D CPU/GPU** (Ref. *9*)
7. A joint ROF-LLT (Lysaker-Lundervold-Tai) model for higher-order regularisation **2D/3D CPU/GPU** (Ref. *10,11*)
8. Nonlocal Total Variation regularisation (GS fixed point iteration) **2D CPU/GPU** (Ref. *12*)

### Multi-channel (denoising):
1. Fast-Gradient-Projection (FGP) Directional Total Variation **2D/3D CPU/GPU** (Ref. *3,4,2*)
2. Total Nuclear Variation (TNV) penalty **2D+channels CPU** (Ref. *7*)

### Inpainting:
1. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU** (Ref. *8*)
2. Iterative nonlocal vertical marching method  **2D CPU**


## Installation:

The package comes as a [CMake](https://cmake.org) project so you will need CMake (v.>=3) to configure it. Additionally you will need a C compiler, `make` (on linux) and CUDA SDK where available. The toolkit may be used directly from C/C++ as it is compiled as a shared library (check-out the include files in `Core` for this). We provide wrappers for Python and Matlab.

1. Clone this repository to a directory, i.e. `CCPi-Regularisation-Toolkit`, 
2. create a build directory. 
3. Issue `cmake` to configure (or `cmake-gui`, or `ccmake`, or `cmake3`). Use additional flags to fine tune the configuration. 

### CMake flags
Flags used during configuration

| CMake flag | type | meaning |
|:---|:----|:----|
| `BUILD_PYTHON_WRAPPER` | bool | `ON\|OFF` whether to build the Python wrapper |
| `BUILD_MATLAB_WRAPPER` | bool | `ON\|OFF` whether to build the Matlab wrapper |
| `CMAKE_INSTALL_PREFIX` | path | your favourite install directory |
| `PYTHON_DEST_DIR` | path | python modules install directory (default `${CMAKE_INSTALL_PREFIX}/python`) |
| `MATLAB_DEST_DIR` | path | Matlab modules install directory (default `${CMAKE_INSTALL_PREFIX}/matlab`)|
| `BUILD_CUDA` | bool | `ON\|OFF` whether to build the CUDA regularisers |
| `CONDA_BUILD`| bool | `ON\|OFF` whether it is installed with `setup.py install`|
| `Matlab_ROOT_DIR` | path | Matlab directory|
|`PYTHON_EXECUTABLE` | path | /path/to/python/executable|

Here an example of build on Linux (see also `run.sh` for additional info):

```bash
git clone https://github.com/vais-ral/CCPi-Regularisation-Toolkit.git
cd build
cmake .. -DCONDA_BUILD=OFF -DBUILD_MATLAB_WRAPPER=ON -DBUILD_PYTHON_WRAPPER=ON -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install
make install
cd install/python
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:../lib
```


### Python
#### Python binaries
Python binaries are distributed via the [ccpi](https://anaconda.org/ccpi/ccpi-regulariser) conda channel. Currently we produce packages for Linux64, Python 2.7, 3.5 and 3.6, NumPy 1.12 and 1.13.

```
conda install ccpi-regulariser -c ccpi -c conda-forge
```

#### Python (conda-build)
```
	export CIL_VERSION=0.10.3
	conda build Wrappers/Python/conda-recipe --numpy 1.12 --python 3.5 
	conda install ccpi-regulariser=${CIL_VERSION} --use-local --force
	cd demos/
	python demo_cpu_regularisers.py # to run CPU demo
	python demo_gpu_regularisers.py # to run GPU demo
```

#### Python build

If passed `CONDA_BUILD=ON` the software will be installed by issuing `python setup.py install` which will install in the system python (or whichever other python it's been picked up by CMake at configuration time.) 
If passed `CONDA_BUILD=OFF` the software will be installed in the directory pointed by `${PYTHON_DEST_DIR}` which defaults to `${CMAKE_INSTALL_PREFIX}/python`. Therefore this directory should be added to the `PYTHONPATH`.

If Python is not picked by CMake you can provide the additional flag to CMake `-DPYTHON_EXECUTABLE=/path/to/python/executable`.

### Matlab

Matlab wrapper will install in the `${MATLAB_DEST_DIR}` directory, which defaults to `${CMAKE_INSTALL_PREFIX}/matlab`

If Matlab is not picked by CMake, you could add `-DMatlab_ROOT_DIR=<Matlab directory>`. 

#### Linux
Because you've installed the modules in `<your favourite install directory>` you need to instruct Matlab to look in those directories:

```bash 

PATH="/path/to/mex/:$PATH" LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH" matlab
```
By default `/path/to/mex` is `${CMAKE_INSTALL_PREFIX}/bin` and `/path/to/library/` is `${CMAKE_INSTALL_PREFIX}/lib`

#### Windows
On Windows the `dll` and the mex modules must reside in the same directory. It is sufficient to add the directory at the beginning of the m-file.
```matlab
addpath(/path/to/library);
```

#### Legacy Matlab installation (partly supported, please use Cmake)
```
	
	cd /Wrappers/Matlab/mex_compile
	compileCPU_mex.m % to compile CPU modules
	compileGPU_mex.m % to compile GPU modules (see instructions in the file)
```

### References to implemented methods:
1. [Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.](https://www.sciencedirect.com/science/article/pii/016727899290242F)

2. [Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.](https://doi.org/10.1109/TIP.2009.2028250)

3. [Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.](https://doi.org/10.1137/15M1047325)

4. [Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems, 34(6)](https://doi.org/10.1088/1361-6420/aaba86) **Results can be reproduced using the following** [SOFTWARE](https://github.com/dkazanc/multi-channel-X-ray-CT)

5. [Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.](https://doi.org/10.1137/080725891)

6. [Bredies, K., Kunisch, K. and Pock, T., 2010. Total generalized variation. SIAM Journal on Imaging Sciences, 3(3), pp.492-526.](https://doi.org/10.1137/090769521)

7. [Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.](https://doi.org/10.1137/15M102873X)

8. [Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.](https://doi.org/10.1109/83.661192)

9. [Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191.](https://doi.org/10.1007/s11263-010-0330-1)

10. [Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.](https://doi.org/10.1109/TIP.2003.819229)

11. [Kazantsev, D., Guo, E., Phillion, A.B., Withers, P.J. and Lee, P.D., 2017. Model-based iterative reconstruction using higher-order regularization of dynamic synchrotron data. Measurement Science and Technology, 28(9), p.094004.](https://doi.org/10.1088/1361-6501/aa7fa8)

12. [Abderrahim E., Lezoray O. and Bougleux S. 2008. Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17(7), pp. 1047-1060.](https://ieeexplore.ieee.org/document/4526700)

### References to Software:
* If software is used, please refer to [11], however, the supporting publication is in progress. 

### Applications:

* [Regularised FISTA iterative reconstruction algorithm for X-ray tomographic reconstruction with highly inaccurate measurements (MATLAB/Python code)](https://github.com/dkazanc/FISTA-tomo)
* [Regularised ADMM iterative reconstruction algorithm for X-ray tomographic reconstruction (MATLAB code)](https://github.com/dkazanc/ADMM-tomo)
* [Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography (MATLAB code)](https://github.com/dkazanc/multi-channel-X-ray-CT)

### License:
[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)

### Acknowledgments:
CCPi-RGL software is a product of the [CCPi](https://www.ccpi.ac.uk/) group and STFC SCD software developers. Any relevant questions/comments can be e-mailed to Daniil Kazantsev at dkazanc@hotmail.com