1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
% Demonstration of tomographic 3D reconstruction from X-ray synchrotron
% dataset (dendrites) using various data fidelities
% ! It is advisable not to run the whole script, it will take lots of time to reconstruct the whole 3D data using many algorithms !
clear all
close all
%%
% % adding paths
addpath('../data/');
addpath('../main_func/'); addpath('../main_func/regularizers_CPU/'); addpath('../main_func/regularizers_GPU/NL_Regul/'); addpath('../main_func/regularizers_GPU/Diffus_HO/');
addpath('../supp/');
load('DendrRawData.mat') % load raw data of 3D dendritic set
angles_rad = angles*(pi/180); % conversion to radians
size_det = size(data_raw3D,1); % detectors dim
angSize = size(data_raw3D, 2); % angles dim
slices_tot = size(data_raw3D, 3); % no of slices
recon_size = 950; % reconstruction size
Sino3D = zeros(size_det, angSize, slices_tot, 'single'); % log-corrected sino
% normalizing the data
for jj = 1:slices_tot
sino = data_raw3D(:,:,jj);
for ii = 1:angSize
Sino3D(:,ii,jj) = log((flats_ar(:,jj)-darks_ar(:,jj))./(single(sino(:,ii)) - darks_ar(:,jj)));
end
end
Sino3D = Sino3D.*1000;
Weights3D = single(data_raw3D); % weights for PW model
clear data_raw3D
%%
% set projection/reconstruction geometry here
Z_slices = 5;
det_row_count = Z_slices;
proj_geom = astra_create_proj_geom('parallel3d', 1, 1, det_row_count, size_det, angles_rad);
vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
%%
fprintf('%s\n', 'Reconstruction using FBP...');
FBP = iradon(Sino3D(:,:,10), angles,recon_size);
figure; imshow(FBP , [0, 3]); title ('FBP reconstruction');
%--------FISTA_REC modular reconstruction alogrithms---------
%%
fprintf('%s\n', 'Reconstruction using FISTA-OS-PWLS without regularization...');
clear params
params.proj_geom = proj_geom; % pass geometry to the function
params.vol_geom = vol_geom;
params.sino = Sino3D;
params.iterFISTA = 12;
params.weights = Weights3D;
params.subsets = 16; % the number of ordered subsets
params.show = 1;
params.maxvalplot = 2.5; params.slice = 2;
tic; [X_fista, outputFISTA] = FISTA_REC(params); toc;
figure; imshow(X_fista(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-PWLS reconstruction');
%%
fprintf('%s\n', 'Reconstruction using FISTA-OS-PWLS-TV...');
clear params
params.proj_geom = proj_geom; % pass geometry to the function
params.vol_geom = vol_geom;
params.sino = Sino3D;
params.iterFISTA = 12;
params.Regul_Lambda_FGPTV = 0.005; % TV regularization parameter for FGP-TV
params.weights = Weights3D;
params.subsets = 16; % the number of ordered subsets
params.show = 1;
params.maxvalplot = 2.5; params.slice = 2;
tic; [X_fista_TV, outputTV] = FISTA_REC(params); toc;
figure; imshow(X_fista_TV(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-PWLS-TV reconstruction');
%%
fprintf('%s\n', 'Reconstruction using FISTA-OS-GH-TV...');
clear params
params.proj_geom = proj_geom; % pass geometry to the function
params.vol_geom = vol_geom;
params.sino = Sino3D;
params.iterFISTA = 12;
params.Regul_Lambda_FGPTV = 0.005; % TV regularization parameter for FGP-TV
params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
params.Ring_Alpha = 21; % to boost ring removal procedure
params.weights = Weights3D;
params.subsets = 16; % the number of ordered subsets
params.show = 1;
params.maxvalplot = 2.5; params.slice = 2;
tic; [X_fista_GH_TV, outputGHTV] = FISTA_REC(params); toc;
figure; imshow(X_fista_GH_TV(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-GH-TV reconstruction');
%%
fprintf('%s\n', 'Reconstruction using FISTA-OS-GH-TV-LLT...');
clear params
params.proj_geom = proj_geom; % pass geometry to the function
params.vol_geom = vol_geom;
params.sino = Sino3D;
params.iterFISTA = 12;
params.Regul_Lambda_FGPTV = 0.005; % TV regularization parameter for FGP-TV
params.Regul_LambdaLLT = 100; % regularization parameter for LLT problem
params.Regul_tauLLT = 0.0005; % time-step parameter for the explicit scheme
params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
params.Ring_Alpha = 21; % to boost ring removal procedure
params.weights = Weights3D;
params.subsets = 16; % the number of ordered subsets
params.show = 1;
params.maxvalplot = 2.5; params.slice = 2;
tic; [X_fista_GH_TVLLT, outputGH_TVLLT] = FISTA_REC(params); toc;
figure; imshow(X_fista_GH_TVLLT(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-GH-TV-LLT reconstruction');
%%
fprintf('%s\n', 'Reconstruction using FISTA-OS-GH-HigherOrderDiffusion...');
% !GPU version!
clear params
params.proj_geom = proj_geom; % pass geometry to the function
params.vol_geom = vol_geom;
params.sino = Sino3D(:,:,1:5);
params.iterFISTA = 25;
params.Regul_LambdaDiffHO = 2; % DiffHO regularization parameter
params.Regul_DiffHO_EdgePar = 0.05; % threshold parameter
params.Regul_Iterations = 150;
params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
params.Ring_Alpha = 21; % to boost ring removal procedure
params.weights = Weights3D(:,:,1:5);
params.subsets = 16; % the number of ordered subsets
params.show = 1;
params.maxvalplot = 2.5; params.slice = 1;
tic; [X_fista_GH_HO, outputHO] = FISTA_REC(params); toc;
figure; imshow(X_fista_GH_HO(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-HigherOrderDiffusion reconstruction');
%%
fprintf('%s\n', 'Reconstruction using FISTA-PB...');
% !GPU version!
clear params
params.proj_geom = proj_geom; % pass geometry to the function
params.vol_geom = vol_geom;
params.sino = Sino3D(:,:,1);
params.iterFISTA = 25;
params.Regul_LambdaPatchBased_GPU = 3; % PB regularization parameter
params.Regul_PB_h = 0.04; % threhsold parameter
params.Regul_PB_SearchW = 3;
params.Regul_PB_SimilW = 1;
params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
params.Ring_Alpha = 21; % to boost ring removal procedure
params.weights = Weights3D(:,:,1);
params.show = 1;
params.maxvalplot = 2.5; params.slice = 1;
tic; [X_fista_GH_PB, outputPB] = FISTA_REC(params); toc;
figure; imshow(X_fista_GH_PB(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-PB reconstruction');
%%
fprintf('%s\n', 'Reconstruction using FISTA-OS-GH-TGV...');
% still testing...
clear params
params.proj_geom = proj_geom; % pass geometry to the function
params.vol_geom = vol_geom;
params.sino = Sino3D;
params.iterFISTA = 12;
params.Regul_LambdaTGV = 0.5; % TGV regularization parameter
params.Regul_Iterations = 5;
params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
params.Ring_Alpha = 21; % to boost ring removal procedure
params.weights = Weights3D;
params.subsets = 16; % the number of ordered subsets
params.show = 1;
params.maxvalplot = 2.5; params.slice = 1;
tic; [X_fista_GH_TGV, outputTGV] = FISTA_REC(params); toc;
figure; imshow(X_fista_GH_TGV(:,:,params.slice) , [0, 2.5]); title ('FISTA-OS-GH-TGV reconstruction');
%%
% fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
% clear params
% params.proj_geom = proj_geom; % pass geometry to the function
% params.vol_geom = vol_geom;
% params.sino = Sino3D(:,:,10);
% params.iterFISTA = 50;
% params.L_const = 0.01; % Lipshitz constant
% params.Regul_LambdaTV = 0.008; % TV regularization parameter for FISTA-TV
% params.fidelity = 'student'; % choosing Student t penalty
% params.weights = Weights3D(:,:,10);
% params.show = 0;
% params.initialize = 1;
% params.maxvalplot = 2.5; params.slice = 1;
%
% tic; [X_fistaStudentTV] = FISTA_REC(params); toc;
% figure; imshow(X_fistaStudentTV(:,:,1), [0, 2.5]); title ('FISTA-Student-TV reconstruction');
%%
|