summaryrefslogtreecommitdiffstats
path: root/supp/ssim_index.m
blob: 4fa7a79709476c1434a0a0ecd1a7a9fe34556f27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L)

%========================================================================
%SSIM Index, Version 1.0
%Copyright(c) 2003 Zhou Wang
%All Rights Reserved.
%
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error visibility to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 4, pp.600-612,
%Apr. 2004.
%
%Kindly report any suggestions or corrections to zhouwang@ieee.org
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
%        (2) img2: the second image being compared
%        (3) K: constants in the SSIM index formula (see the above
%            reference). defualt value: K = [0.01 0.03]
%        (4) window: local window for statistics (see the above
%            reference). default widnow is Gaussian given by
%            window = fspecial('gaussian', 11, 1.5);
%        (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
%            If one of the images being compared is regarded as 
%            perfect quality, then mssim can be considered as the
%            quality measure of the other image.
%            If img1 = img2, then mssim = 1.
%        (2) ssim_map: the SSIM index map of the test image. The map
%            has a smaller size than the input images. The actual size:
%            size(img1) - size(window) + 1.
%
%Default Usage:
%   Given 2 test images img1 and img2, whose dynamic range is 0-255
%
%   [mssim ssim_map] = ssim_index(img1, img2);
%
%Advanced Usage:
%   User defined parameters. For example
%
%   K = [0.05 0.05];
%   window = ones(8);
%   L = 100;
%   [mssim ssim_map] = ssim_index(img1, img2, K, window, L);
%
%See the results:
%
%   mssim                        %Gives the mssim value
%   imshow(max(0, ssim_map).^4)  %Shows the SSIM index map
%
%========================================================================


if (nargin < 2 | nargin > 5)
   ssim_index = -Inf;
   ssim_map = -Inf;
   return;
end

if (size(img1) ~= size(img2))
   ssim_index = -Inf;
   ssim_map = -Inf;
   return;
end

[M N] = size(img1);

if (nargin == 2)
   if ((M < 11) | (N < 11))   % ͼССû塣
           ssim_index = -Inf;
           ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);        % һ׼ƫ1.511*11ĸ˹ͨ˲
   K(1) = 0.01;                                                                      % default settings
   K(2) = 0.03;                                                                      %
   L = 255;                                  %
end

if (nargin == 3)
   if ((M < 11) | (N < 11))
           ssim_index = -Inf;
           ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
                   ssim_index = -Inf;
                   ssim_map = -Inf;
                   return;
      end
   else
           ssim_index = -Inf;
           ssim_map = -Inf;
           return;
   end
end

if (nargin == 4)
   [H W] = size(window);
   if ((H*W) < 4 | (H > M) | (W > N))
           ssim_index = -Inf;
           ssim_map = -Inf;
      return
   end
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
                   ssim_index = -Inf;
                   ssim_map = -Inf;
                   return;
      end
   else
           ssim_index = -Inf;
           ssim_map = -Inf;
           return;
   end
end

if (nargin == 5)
   [H W] = size(window);
   if ((H*W) < 4 | (H > M) | (W > N))
           ssim_index = -Inf;
           ssim_map = -Inf;
      return
   end
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
                   ssim_index = -Inf;
                   ssim_map = -Inf;
                   return;
      end
   else
           ssim_index = -Inf;
           ssim_map = -Inf;
           return;
   end
end
%%
C1 = (K(1)*L)^2;    % C1Lxyá
C2 = (K(2)*L)^2;    % C2ԱȶCxyá
window = window/sum(sum(window)); %˲һ
img1 = double(img1); 
img2 = double(img2);

mu1   = filter2(window, img1, 'valid');  % ͼ˲ӼȨ
mu2   = filter2(window, img2, 'valid');  % ͼ˲ӼȨ

mu1_sq = mu1.*mu1;     % Uxƽֵ
mu2_sq = mu2.*mu2;     % Uyƽֵ
mu1_mu2 = mu1.*mu2;    % Ux*Uyֵ

sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;  % sigmax ׼
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;  % sigmay ׼
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;   % sigmaxy׼

if (C1 > 0 & C2 > 0)
   ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
   numerator1 = 2*mu1_mu2 + C1;
   numerator2 = 2*sigma12 + C2;
   denominator1 = mu1_sq + mu2_sq + C1;
   denominator2 = sigma1_sq + sigma2_sq + C2;
   ssim_map = ones(size(mu1));
   index = (denominator1.*denominator2 > 0);
   ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
   index = (denominator1 ~= 0) & (denominator2 == 0);
   ssim_map(index) = numerator1(index)./denominator1(index);
end

mssim = mean2(ssim_map);

return