1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
/**
*
* @file umem.c
* @brief This file contains the functions handling user space memory.
* @author Guillermo Marcus
* @date 2009-04-05
*
*/
#include <linux/version.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/cdev.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include "base.h"
/**
*
* Reserve a new scatter/gather list and map it from memory to PCI bus addresses.
*
*/
int pcidriver_umem_sgmap(pcidriver_privdata_t *privdata, umem_handle_t *umem_handle)
{
int i, res, nr_pages;
struct page **pages;
struct scatterlist *sg = NULL;
pcidriver_umem_entry_t *umem_entry;
unsigned int nents;
unsigned long count,offset,length;
/*
* We do some checks first. Then, the following is necessary to create a
* Scatter/Gather list from a user memory area:
* - Determine the number of pages
* - Get the pages for the memory area
* - Lock them.
* - Create a scatter/gather list of the pages
* - Map the list from memory to PCI bus addresses
*
* Then, we:
* - Create an entry on the umem list of the device, to cache the mapping.
* - Create a sysfs attribute that gives easy access to the SG list
*/
/* zero-size?? */
if (umem_handle->size == 0)
return -EINVAL;
/* Direction is better ignoring during mapping. */
/* We assume bidirectional buffers always, except when sync'ing */
/* calculate the number of pages */
nr_pages = ((umem_handle->vma & ~PAGE_MASK) + umem_handle->size + ~PAGE_MASK) >> PAGE_SHIFT;
mod_info_dbg("nr_pages computed: %u\n", nr_pages);
/* Allocate space for the page information */
/* This can be very big, so we use vmalloc */
if ((pages = vmalloc(nr_pages * sizeof(*pages))) == NULL)
return -ENOMEM;
mod_info_dbg("allocated space for the pages.\n");
/* Allocate space for the scatterlist */
/* We do not know how many entries will be, but the maximum is nr_pages. */
/* This can be very big, so we use vmalloc */
if ((sg = vmalloc(nr_pages * sizeof(*sg))) == NULL)
goto umem_sgmap_pages;
sg_init_table(sg, nr_pages);
mod_info_dbg("allocated space for the SG list.\n");
/* Get the page information */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5,8,0)
/*As of Kernel 5.8.0, the mmap_sem member of the MM struct has been
* renamed to mmap_lock
* See:
* https://github.com/torvalds/linux/commit/da1c55f1b272f4bd54671d459b39ea7b54944ef9
*/
down_read(¤t->mm->mmap_lock);
res = get_user_pages_compat(umem_handle->vma, nr_pages, pages);
up_read(¤t->mm->mmap_lock);
#else
down_read(¤t->mm->mmap_sem);
res = get_user_pages_compat(umem_handle->vma, nr_pages, pages);
up_read(¤t->mm->mmap_sem);
#endif
/* Error, not all pages mapped */
if (res < (int)nr_pages) {
mod_info("Could not map all user pages (%d of %d)\n", res, nr_pages);
/* If only some pages could be mapped, we release those. If a real
* error occured, we set nr_pages to 0 */
nr_pages = (res > 0 ? res : 0);
goto umem_sgmap_unmap;
}
mod_info_dbg("Got the pages (%d).\n", res);
/* Lock the pages, then populate the SG list with the pages */
/* page0 is different */
if ( !PageReserved(pages[0]) )
lock_page(pages[0]);
offset = (umem_handle->vma & ~PAGE_MASK);
length = (umem_handle->size > (PAGE_SIZE-offset) ? (PAGE_SIZE-offset) : umem_handle->size);
sg_set_page(&sg[0], pages[0], length, offset);
count = umem_handle->size - length;
for(i=1; i<nr_pages; i++) {
/* Lock page first */
if ( !PageReserved(pages[i]) )
lock_page(pages[i]);
/* Populate the list */
sg_set_page(&sg[i], pages[i], ((count > PAGE_SIZE) ? PAGE_SIZE : count), 0);
count -= sg[i].length;
}
/* Use the page list to populate the SG list */
/* SG entries may be merged, res is the number of used entries */
/* We have originally nr_pages entries in the sg list */
if ((nents = pci_map_sg(privdata->pdev, sg, nr_pages, PCI_DMA_BIDIRECTIONAL)) == 0)
goto umem_sgmap_unmap;
mod_info_dbg("Mapped SG list (%d entries).\n", nents);
/* Add an entry to the umem_list of the device, and update the handle with the id */
/* Allocate space for the new umem entry */
if ((umem_entry = kmalloc(sizeof(*umem_entry), GFP_KERNEL)) == NULL)
goto umem_sgmap_entry;
/* Fill entry to be added to the umem list */
umem_entry->id = atomic_inc_return(&privdata->umem_count) - 1;
umem_entry->nr_pages = nr_pages; /* Will be needed when unmapping */
umem_entry->pages = pages;
umem_entry->nents = nents;
umem_entry->sg = sg;
if (pcidriver_sysfs_initialize_umem(privdata, umem_entry->id, &(umem_entry->sysfs_attr)) != 0)
goto umem_sgmap_name_fail;
/* Add entry to the umem list */
spin_lock( &(privdata->umemlist_lock) );
list_add_tail( &(umem_entry->list), &(privdata->umem_list) );
spin_unlock( &(privdata->umemlist_lock) );
/* Update the Handle with the Handle ID of the entry */
umem_handle->handle_id = umem_entry->id;
return 0;
umem_sgmap_name_fail:
kfree(umem_entry);
umem_sgmap_entry:
pci_unmap_sg( privdata->pdev, sg, nr_pages, PCI_DMA_BIDIRECTIONAL );
umem_sgmap_unmap:
/* release pages */
if (nr_pages > 0) {
for(i=0; i<nr_pages; i++) {
if (PageLocked(pages[i]))
unlock_page(pages[i]);
if (!PageReserved(pages[i]))
set_page_dirty(pages[i]);
put_page(pages[i]);
}
}
vfree(sg);
umem_sgmap_pages:
vfree(pages);
return -ENOMEM;
}
/**
*
* Unmap a scatter/gather list
*
*/
int pcidriver_umem_sgunmap(pcidriver_privdata_t *privdata, pcidriver_umem_entry_t *umem_entry)
{
int i;
pcidriver_sysfs_remove(privdata, &(umem_entry->sysfs_attr));
/* Unmap user memory */
pci_unmap_sg( privdata->pdev, umem_entry->sg, umem_entry->nr_pages, PCI_DMA_BIDIRECTIONAL );
/* Release the pages */
if (umem_entry->nr_pages > 0) {
for(i=0; i<(umem_entry->nr_pages); i++) {
/* Mark pages as Dirty and unlock it */
if ( !PageReserved( umem_entry->pages[i] )) {
SetPageDirty( umem_entry->pages[i] );
unlock_page(umem_entry->pages[i]);
}
/* and release it from the cache */
put_page( umem_entry->pages[i] );
}
}
/* Remove the umem list entry */
spin_lock( &(privdata->umemlist_lock) );
list_del( &(umem_entry->list) );
spin_unlock( &(privdata->umemlist_lock) );
/* Release SG list and page list memory */
/* These two are in the vm area of the kernel */
vfree(umem_entry->pages);
vfree(umem_entry->sg);
/* Release umem_entry memory */
kfree(umem_entry);
return 0;
}
/**
*
* Unmap all scatter/gather lists.
*
*/
int pcidriver_umem_sgunmap_all(pcidriver_privdata_t *privdata)
{
struct list_head *ptr, *next;
pcidriver_umem_entry_t *umem_entry;
/* iterate safely over the entries and delete them */
list_for_each_safe( ptr, next, &(privdata->umem_list) ) {
umem_entry = list_entry(ptr, pcidriver_umem_entry_t, list );
pcidriver_umem_sgunmap( privdata, umem_entry ); /* spin lock inside! */
}
return 0;
}
/**
*
* Copies the scatter/gather list from kernelspace to userspace.
*
*/
int pcidriver_umem_sgget(pcidriver_privdata_t *privdata, umem_sglist_t *umem_sglist)
{
int i;
pcidriver_umem_entry_t *umem_entry;
struct scatterlist *sg;
int idx = 0;
dma_addr_t cur_addr;
unsigned int cur_size;
/* Find the associated umem_entry for this buffer */
umem_entry = pcidriver_umem_find_entry_id( privdata, umem_sglist->handle_id );
if (umem_entry == NULL)
return -EINVAL; /* umem_handle is not valid */
/* Check if passed SG list is enough */
if (umem_sglist->nents < umem_entry->nents)
return -EINVAL; /* sg has not enough entries */
/* Copy the SG list to the user format */
if (umem_sglist->type == PCIDRIVER_SG_MERGED) {
for_each_sg(umem_entry->sg, sg, umem_entry->nents, i ) {
if (i==0) {
umem_sglist->sg[0].addr = sg_dma_address( sg );
umem_sglist->sg[0].size = sg_dma_len( sg );
idx = 0;
}
else {
cur_addr = sg_dma_address( sg );
cur_size = sg_dma_len( sg );
/* Check if entry fits after current entry */
if (cur_addr == (umem_sglist->sg[idx].addr + umem_sglist->sg[idx].size)) {
umem_sglist->sg[idx].size += cur_size;
continue;
}
/* Skip if the entry is zero-length (yes, it can happen.... at the end of the list) */
if (cur_size == 0)
continue;
/* None of the above, add new entry */
idx++;
umem_sglist->sg[idx].addr = cur_addr;
umem_sglist->sg[idx].size = cur_size;
}
}
/* Set the used size of the SG list */
umem_sglist->nents = idx+1;
} else {
for_each_sg(umem_entry->sg, sg, umem_entry->nents, i ) {
mod_info("entry: %d\n",i);
umem_sglist->sg[i].addr = sg_dma_address( sg );
umem_sglist->sg[i].size = sg_dma_len( sg );
}
/* Set the used size of the SG list */
/* Check if the last one is zero-length */
if ( umem_sglist->sg[ umem_entry->nents - 1].size == 0)
umem_sglist->nents = umem_entry->nents -1;
else
umem_sglist->nents = umem_entry->nents;
}
return 0;
}
/**
*
* Sync user space memory from/to device
*
*/
int pcidriver_umem_sync( pcidriver_privdata_t *privdata, umem_handle_t *umem_handle )
{
pcidriver_umem_entry_t *umem_entry;
/* Find the associated umem_entry for this buffer */
umem_entry = pcidriver_umem_find_entry_id( privdata, umem_handle->handle_id );
if (umem_entry == NULL)
return -EINVAL; /* umem_handle is not valid */
switch (umem_handle->dir) {
case PCIDRIVER_DMA_TODEVICE:
pci_dma_sync_sg_for_device( privdata->pdev, umem_entry->sg, umem_entry->nents, PCI_DMA_TODEVICE );
break;
case PCIDRIVER_DMA_FROMDEVICE:
pci_dma_sync_sg_for_cpu( privdata->pdev, umem_entry->sg, umem_entry->nents, PCI_DMA_FROMDEVICE );
break;
case PCIDRIVER_DMA_BIDIRECTIONAL:
pci_dma_sync_sg_for_device( privdata->pdev, umem_entry->sg, umem_entry->nents, PCI_DMA_BIDIRECTIONAL );
pci_dma_sync_sg_for_cpu( privdata->pdev, umem_entry->sg, umem_entry->nents, PCI_DMA_BIDIRECTIONAL );
break;
default:
return -EINVAL; /* wrong direction parameter */
}
return 0;
}
/*
*
* Get the pcidriver_umem_entry_t structure for the given id.
*
* @param id ID of the umem entry to search for
*
*/
pcidriver_umem_entry_t *pcidriver_umem_find_entry_id(pcidriver_privdata_t *privdata, int id)
{
struct list_head *ptr;
pcidriver_umem_entry_t *entry;
spin_lock(&(privdata->umemlist_lock));
list_for_each(ptr, &(privdata->umem_list)) {
entry = list_entry(ptr, pcidriver_umem_entry_t, list );
if (entry->id == id) {
spin_unlock( &(privdata->umemlist_lock) );
return entry;
}
}
spin_unlock(&(privdata->umemlist_lock));
return NULL;
}
|